
 

 

 

 

Abstract— In ischemic stroke, the pattern of recovery in 

brain is the most important correlate of functional recovery. 

Using a set of acute phase MR images (Diffusion-Weighted - 

DWI, T1-Weighted – T1WI, T2-Weighted T2WI, and proton 

density weighted - PDWI) for inputs, and the chronic T2WI at 3 

months as an outcome measure, an Artificial Neural Network 

(ANN) was trained to predict the 3-month outcome in the form 

of a pixel-by-pixel forecast of the chronic T2WI. The ANN was 

trained and tested using 14 slices from 3 subjects using a K-

Folding Cross-Validation (KFCV) method with 14 folds. The 

Area Under the Receiver Operator Characteristic Curve 

(AUROC) for 14 folds was used for training, testing and 

optimization of the ANN. After training and optimization, the 

ANN produced a map that was very well correlated (r = 0.88, p 

< 0.0001) with the T2WI at 3 months. To confirm that trained 

ANN performed well against a new dataset, 13 slices from 4 

other patients were also shown to the trained ANN. The 

prediction made by the ANN had an excellent overall 

performance (AUROC = 0.82), and was very well correlated to 

the 3-month ischemic lesion on T2-Weighted image. 

I. INTRODUCTION 

 n evaluating treatment efficacy, the pattern of recovery in 

brain tissue is considered to be the most important 

surrogate marker [1]. Consequently, during the acute phase 

of ischemic stroke, a fast and reliable identification of 

ischemic tissue, and a prediction as to its fate, would aid 

clinical decision-making, helping to maximize benefit and 

minimize side effects of a therapeutic intervention [2, 3]. 

Many studies, by correlating with follow-up imaging or 

neurological status, have shown the potential for diffusion 

weighted imaging (DWI), perfusion weighted imaging 

(PWI), and/or T2-weighted (T2WI) magnetic resonance 

imaging (MRI) used together for staging stroke outcome [4-

6]. Most of these analyses were performed using as an 

outcome metric the volume of a region-of-interest (ROI) 

defined by the difference between an acute data set and the 

outcome image [6-8]. For instance, it has been shown that 
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unsupervised clustering approaches, such as the ISODATA 

(Iterative Self-Organizing Data Analysis) Technique can 

utilize combined MRI data sets from the acute [9, 10] and 

the subacute [1] phase post-stroke to predict final infarct 

volume and thus produce a time-independent surrogate MRI 

outcome predictor [2, 10-13].  However ISODATA has 

some significant drawbacks.  

   ISODATA is an unsupervised segmentation procedure, 

related to the K-means algorithm, in the N-dimensional 

feature space of the combined data set. Based on the position 

of each pixel in the N-dimensional feature space, the 

algorithm assigns a membership number.  In stroke, there are 

a few (always 12 or less) memberships, corresponding to at 

most 12 clusters in the N-dimensional feature space.  Thus, 

maps produced in ISODATA are sharply delineated, and not 

approximately continuous as in the outcome measure, the 

T2WI. An associated classification scheme standardizes 

ISODATA clusters on the basis of two known clusters: 

normal white matter and CSF.  For comparison purposes, 

signature 1 is assigned to normal white matter and signature 

12 to CSF.  A line in feature space connects the two clusters, 

and the positions of the other clusters are projected onto this 

line.  The cluster whose projection is adjacent to 1 is 

assigned signature number 2, the cluster adjacent to 2 is 

assigned number 3, and so on.  Thus, the mapping of clusters 

to signature numbers is to an extent arbitrary and also 

nonlinear in that a signature of 6 does not mean that this 

cluster projects twice as far along the line as does a signature 

of 3.  This discrete and nonlinear mapping complicates 

potential analyses that might produce a voxel-by-voxel 

correlation between ISODATA as a potential surrogate 

measure and the T2WI outcome measure. Furthermore, to a 

large extent, ISODATA mapping and standardization does 

not produce an easily visualized association between it and 

the outcome measure.  Additional problems in the 

ISODATA technique include: ISODATA’s instability in the 

presence of image artifacts and noise, its sensitivity to initial 

conditions, uncertainty as to the underlying variances of the 

clusters, and its dependence on the assumption of normality 

for the distribution of clustered data [14]. Thus, ISODATA 

and related approaches, while useful, do not provide a pixel-

by-pixel judgment as to the potential of eventual infarction; 

finding a continuous predictor for infarction remains an open 

problem [15, 16] The ANN approach herein proposed 

corrects many of the deficiencies of clustering approaches.  

It provides a very fast (essentially real-time), approximately 

continuous, and intuitive mapping of the predicted outcome, 

while preserving the time-independent and multi-parametric 
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strengths of the ISODATA approach. 

  

II. MATERIALS AND METHODS 

A. Hypothesis 

   We hypothesized that, given a T2 weighted image at the 

chronic stage of stroke (3 months post-stroke), an ANN 

might be trained to directly predict the size and pattern of the 

tissue recovery from the information available in acute phase 

MR images. 

B. Patients and MRI Studies 

   An acute phase MRI image set consisting of a T1-weighted 

(T1WI), T2WI, DWI and proton density (PDWI) was 

selected as the input set to the ANN.  The co-registered three 

month T2 weighted image, considered to be the gold 

standard for final infarct size (and estimation of the tissue 

recovery), was employed as the training set. Seven patients 

(27 total slices) with acute neurological deficit consistent 

with ischemic stroke, and MRI studies within 24 hours of 

onset (defined as the last time the patient was known to be 

without neurological deficit), were selected. Of this set of 

seven patients, three with the best quality images (14 total 

slices) were used for training an ANN. The severity of 

neurological deficit was assessed at the time of the MRI 

study using the National Institutes of Health Stroke Scale 

(NIHSS) score [1-3, 5]. MRI studies were performed at the 

acute time point (<24 h post-ictus), and at outcome (3 

months post-ictus). Patients with cerebral hemorrhage or a 

history of prior stroke were excluded.  

    MRI studies were conducted on a 1.5-tesla GE Signa MR 

scanner with echo-planar capability (GE, Milwaukee, WI). 

Each MRI study consisted of axial multispin echo T2WI, and 

DWI with slice thickness 6 mm. The field of view (FOV) 

was 240 X 240 mm. For T1WI and T2WI, the matrix was 

256 X 192 and for DWI 128 X 128. Additional parameters 

for each study were: (a) T1WI: TR/TE = 600/14 ms; (b) 

T2WI: TR/TE = 2,800/30, 60, 90, 120 ms; (c) axial DWI 

was performed using an echo-planar sequence, TR/TE = 

10,000/101 ms, b-values = 1,000, 600, 300, 0 s/mm2, 1 

NEX.  

    For each patient, four image sets (T1WI, T2WI, DWI and 

PDWI) at the acute time point were selected to provide input 

features to the ANN. All acute- and chronic phase images 

were registered to the acute T2WI using Eigentool software 

[17].  To reduce mis-registration effects, images were 

smoothed using a unity filter with a 3X3 window, and then 

normalized to their mean value, thus creating a feature set 

insensitive to the MR system gain. ROIs were defined by 

thresholding the 3-month T2WI to outline the region of 

infarction.  This region was reflected around the midline and 

adjusted so that the resultant region selected a visually 

normal contralateral area of tissue, so as to approximately 

balance normal and infarcted tissue (prevalence~ 0.35).  The 

selected infarcted and normal regions were used together as 

inputs to the ANN.  

C. Inputs and Training Set for the ANN 

   Using the normalized data from the selected ROIs, a 

feature set was generated from the four selected acute-phase 

images and presented to a feed-forward multilayer 

perceptron (MLP) with back propagation training algorithm 

as an input vector.  In this type of ANN, as shown in Fig. 1, 

the nodes are organized in the input layer, hidden layers, and 

the output layer. Nodes are interconnected by weights in 

such a way that information propagates from one layer to the 

next through a sigmoid (bipolar) activation function.  

Learning rate and momentum factors control the internode 

weight adjustment during the training. A back propagation 

learning strategy [18-20] was employed for training the ANN 

in a supervised mode. In this strategy, a trial set of weights 

(the weight vectors, one vector for each layer of the ANN) is 

proposed. The input vectors are presented to the ANN, and 

the output result compared to the class identifier (in our case, 

this was the co-registered T2 weighted image at three month 

study). The weight vectors are then adjusted to minimize 

some measure of error, i.e., the Mean Square Error (MSE) 

between the output of the ANN and the training set. This 

procedure is performed iteratively across the entire data set. 

    Batch processing was used to improve the convergence 

rate and the stability of training. The weight changes 

obtained from each training case were accumulated, and the 

weights updated after the entire set of training cases was 

evaluated. Batch processing improves stability, but with a 

tradeoff in the convergence rate [20, 21]. A K-fold cross-

validation (KFCV) method was employed for training, 

testing, and network optimization [21, 22].  

D. ANN Optimization and Generalization Error 

 
 

Fig. 1.  ANN diagram for phase of training and prediction. As shown 

in this figure, 4 MR image modalities are input to the ANN to predict 

T2WI at three month. Note that the MR modalities are normalized to 

their brain mean values before feeding to the ANN. 

 



 

 

 

     To generalize the ANN, i.e., to allow its application to 

a wide range of inputs, we needed to avoid both under-fitting 

of the training data (which generates a high variance in the 

output estimate) and over-fitting of the training data (which 

produces biased outputs). There are a number of strategies 

for assuring generalization: 

1. Optimize the number of free parameters (independent 

connection weights) in the model (e.g., the number of 

neurons in each layer and the number of layers). 2. Stop the 

gradient descent training at an appropriate point. 3. Add 

noise to the training patterns to smooth out the data points. 

Strategy number 3 is employed in cases where local minima 

“trap” the ANN optimization process. Since no trapping was 

observed, strategy number 3 was not employed in this study. 

To employ strategies number 1 and 2, we must estimate from 

our training data what the generalization error is likely be. 

  A K-fold cross-validation (KFCV) method was employed 

for training, testing, and network optimization [20-23]. To 

characterize the generalization error, we trained and 

validated the ANN by the KFCV method using the area 

under the receiver operating curve (AUROC) as a cost 

function [21, 22, 24, 25]. In KFCV, the training data are 

divided at random into K distinct subsets, the network is then 

trained using K–1 subsets, and tested on the remaining 

subset. The process of training and testing is then repeated 

for each of the K possible choices of the subset omitted from 

the training. In our case, a large number (n=50) of the 

random subsets were used for training and cross-validation. 

The average Correct Classification Fraction (CCF) at 

different epochs for the K omitted subsets was plotted and 

the epoch corresponding to 10% of its plateau was taken to 

be the stopping epoch.  The mean squared error (MSE) of 

the ANN for all K subsets at the different epochs was 

calculated and its average value at the stopping epoch was 

taken as the measure of generalization error. This procedure 

has the advantage that it allows us to use a high proportion of 

the available training data, a fraction (1 – 1/K), for training, 

while making use of all the data points in estimating the 

generalization error or agreement.  

The cost is that the process can be lengthy, since we need 

to train and evaluate the network K times. Typically, K≈10 is 

considered reasonable [22, 25].  In this study, K was set to 

14 for 14 slices of 3 patients (1 in each fold) and the ANN 

had a single output, to predict a T2WI at the chronic time 

point. 

 

 

To measure how accurately this ANN matched the whole 

input dataset (each set of MR modalities for all pixels) with 

the entire outcome set (each pixel in all 3-month T2 studies), 

as shown in Fig. 2, the ANN’s Correct Classification 

Fraction (CCF) curve was generated at different levels of 

epochs during the KFCV procedure. The Area Under 

Correct Classification Fraction (AUCCF) which is 

proportional to AUROC (Az) value, was used as an index to 

compare the ANN’s performance, to determine the optimal 

architecture of the ANN, and to find the ANN termination 

error [25, 26]. Each KFCV set was trained until its error was 

below a defined termination error (i.e., the point at which the 

training procedure was stopped). The termination error was 

set by determining the error at the 10% point of the CCF’s 

plateau.  

 

The number of hidden layer nodes may affect the 

performance of the ANN classifier [22, 24]. Since the ANN 

could not be trained by less than 3 neurons in its first hidden 

layer, layer and node optimization were done by maximizing 

 

 
Fig. 3. Area Under Correct Classification Fraction (AUCCF) curve 

versus number of neurons in the second hidden layer. As shown in 

this figure, AUCCF is maximum for six neurons in the second hidden 

layer. 

 

 
Fig. 2. Correct Classification Fraction versus epochs in training and 

testing phases for the optimal ANN (4:3:6:1) using 14 slices of three 

patients with 14 folds. Note the termination epoch is around 35, 

which is corresponded to 10% of CCF curve plateau. 



 

 

 

the AUCCF value for its second hidden layer as a function of 

the number of nodes.  

Internally, in the ANN, the activation function of the ANN 

neurons is a sigmoid function that is most easily programmed 

to work in a polar mode between –1 and 1; the one output 

neuron has a saturated function (uni-polar) with a range 0 to 

1.0. In order to present an easily understood comparison, the 

response of the trained ANN was compared to the chronic 

T2WI (gold standard) by calculating a correlation coefficient 

using all of the pixel comparisons available and ROC curve 

of the optimal ANN. Finally, the optimized ANN was used 

to predict the T2 weighted image of outcome in the 4 

patients (13 slices) that had not been included in the training 

set (KFCV). 

III. RESULTS 

Training and validation objectives of the ANN were 

accomplished in the KFCV method. To test the performance 

of the trained ANN against a new dataset, a total of 13 slices 

of acute data taken in an additional 4 patients was used to 

further test the trained ANN.  As in Fig. 1, a set of 4 feature 

vectors extracted from DWI, T1WI, T2WI  and PDWI were 

presented to the ANN and the performance of the ANN with 

respect to its number of second hidden layer nodes was 

examined by considering the AUCCF value at a KFCV 

termination error (MSE ) of (MSE=0.012 ~ 35 epochs). The 

ANN was trained and tested for a set of normal and lesion 

ROIs. For a statistically reliable comparison, and to increase 

the ANN’s accuracy for lesion detection, map sampling was 

done at a prevalence of about 0.35 by choosing regions of 

interest (ROIs) from normal tissue at about half the area of 

the lesion area.  

     The optimal ANN ([4+1 bias]:[3+1 bias]:[6 +1 bias],[1]) 

was found by maximization of the AUCCF value for 2 

hidden layers. In Fig. 2, a plot of the CCF curve (for the 

optimal ANN; 4:3:6:1) and in Fig. 3 the AUCCF vs. the 

number of neurons in the second hidden layer for a stopping 

error of 0.012, learning rate of 0.01 and momentum of 0, are 

shown. As Fig. 3 demonstrates, the maximum value of the 

AUCCF (~0.75) gives the optimal number of neurons (six 

neurons plus one bias) in the second hidden layer.  

Using all 7 patients (27 slices), the trained ANN ([4+1 

bias]:[3+1 bias]:[6 +1 bias],[1]) generated maps that were 

well correlated (r=0.88, p<0.0001) with the chronic T2WI. 

Fig. 4 contains six exemplary results, showing the acute DWI 

study (left-hand column), the chronic T2WI (middle 

column), and the ANN outcome predicted by the acute image 

set (right-hand column). Image sets 1 through 4 were 

members of the training set, while image sets 5 and 6 were 

not members of the training set (selected from 4 patients who 

were not in the training set). 

   As Fig. 4 demonstrates, the ANN’s predictions, generated 

in seconds by the trained ANN, are visually similar to their 

corresponding chronic T2 weighted images; the pattern and 

lesion size predicted by the ANN are pretty well matched 

with their three-month lesion in both training and test 

examples. Note that the continuity of the ANN output 

provides more information regarding the tissue viability 

compared to other statistical techniques such as ISODATA.  

Fig. 5 presents the scatter plot of the ANN response versus 

T2–weighted image at three months for lesion (gray dots) 

and control areas (black dots) for all 27 slices of seven 

patients. As previously note, the ANN prediction for all 27 

slices of seven patients was highly correlated (r=0.88, p < 

 
 

Fig. 4. Examples of ANN-produced images in 6 exemplary MRI 

slices. Left column: DWI in acute study. Middle: outcome T2WI. 

Right:  ANN predicted outcome from acute image set. Image sets 1, 

2, 3, and 4 were members of the training set.  Image sets 5 and 6 were 

not members of the training set. 



 

 

 

0.0001) with the T2WI outcome measure at three month. 

The AUROC, which represents the performance of the 

trained ANN, was 0.82 for the combined dataset.  When the 

trained ANN was tested on the 13 slices of data from the 4 

patients not used for training the correlation coefficient was 

0.77, p < 0.0001. To estimate the overall performance of the 

trained ANN, ROC curve of the trained ANN (4:3:6:1) was 

generated for all training samples and the Area Under ROC 

(AUROC=0.82) was considered as the performance of the 

trained ANN (see Fig. 6). As shown in Fig. 6, the optimal 

sensitivity and specificity of the ANN were calculated at the 

half angle and ROC curve intercept point (Specificity 

Optimal =0.71, Sensitivity Optimal=0.73) which implies that 

the ANN can predict the lesions with sensitivity of 73% at a 

specificity of the 71%.  Fig. 7 compares the results of 

ISODATA technique with ANN. As shown in this figure, the 

lesion area in ISODATA map is clustered to three different 

signatures (6, 7, and 12). Signatures range between one 

(corresponding to normal tissue) to twelve (corresponding to 

CSF or dead tissue). Whereas the ANN demonstrates a 

continuous map for the status of the tissue at risk in the 

lesion area, the ISODATA only shows three possibilities (6, 

7, and 12) corresponding to the chance of tissue recovery 

after three months. However, both techniques are in 

agreement in the CSF area or dead tissue. 

IV. DISCUSSION 

An ANN was trained and tested to directly predict the size 

and pattern of the eventual tissue damage from the 

information available in acute phase MR images using T2 

weighted image at the chronic stage of stroke (3 months 

post-stroke) as a gold standard of training. The results 

indicate that a trained ANN is capable of predicting the 

pattern and size of eventual infarction, using MR acute 

information. Since it provides a visual estimate of the 

outcome, such modeling may play an important role in the 

assessment of therapeutic interventions applied within 

extended therapeutic windows, currently of great interest in 

the treatment of stroke. It must be noted that the training set 

was quite small in the number of patients and images (14 

slices of 3 patients); that is why the KFCV method was used 

for training and evaluation. 

It was kept small so that we could examine different tactics 

for the construction of the ANN, and get a result in a 

reasonable amount of time. A best-quality subset of images  

 

 
Fig. 5. Scatter plot of the optimized ANN (4:3:6:1) for predicting 

lesion and normal areas (gray and black dots respectively) of 27 slices 

in 7 patients compare to their T2WI at chronic (gold standard). As 

shown in this figure, the ANN prediction is highly correlated 

(N=470266, t=1024.47, df(N-2)=470264, r=0.88, p-one-tailed=p-

two-tailed=0.0001) with the T2WI at three month. 

 
 
Fig. 7.  Circles in both maps (ISODATA and ANN) denotes the 

lesion area. In ISODATA the lesion is clustered into three different 

signatures (12, 7, and 6). Signature number indicates the chance of 

tissue recovery. The higher the signature values, the higher the 

chance of recovery. 

 

 
Fig. 6. ROC curve (AUROC=0.82) for the trained ANN (4:3:6:1). As 

shown in this Figure, the optimal sensitivity and specificity of the 

ANN are calculated at the half angle and ROC curve intercept point 

(Point O; Specificity Optimal =0.71, Sensitivity Optimal=0.73) 

which implies that the ANN can predict lesion and tissue with a 

sensitivity of 73% and a specificity of the 71%. 



 

 

 

was selected to guard against the danger of biasing the ANN 

with low-quality images.  However, when the image sets that 

were not included in the training set were submitted to the 

ANN, the predicted outcome was visually in good agreement 

with the 3-month T2WI lesion size (Fig. 4) and had a high 

correlation coefficient. This demonstrates that an ANN 

constructed using even a relatively restricted set of data, 

when tested on a different (and, as far as we could judge, 

inferior) input data set, continued to produce a robust 

estimate of outcome. Note that the selection of the infarct 

and balancing information from normal regions (There were 

nearly twice as many infarct samples as normal samples; 

prevalence ~ 0.35), slants the accuracy of the ANN toward 

detection of the lesion recovery.  Even this small pilot study 

demonstrates a robust and sensitive predictor of infarct 

outcome, and because it can be produced almost in real-time 

as the image sets emerge from the MRI, shows great 

potential as a tool that may eventually influence clinical 

practice. 

   For future study, we expect to construct an ANN predictor 

of outcome T2WI that is essentially time-independent, either 

because the acute/subacute T2WI image, with its increasing 

contrast with time post-ictus, itself provides a kind of 

biological clock that measures the post-stroke duration, or by 

entering time post-ictus as one of the input parameters to the 

ANN.  Clinical neurological recovery, as measured by the 

change in NIHSS, can also be used as additional information 

for training the ANN in acute to chronic time point (30). 

Therefore, it may be possible to form a more clinically 

relevant prediction of outcome by including the NIHSS score 

as an input to the ANN, in addition to the stated feature set. 

 

 A fast, robust, and time-independent predictor of stroke 

outcome raises the possibility of real-time evaluation of 

stroke in progress, acute stroke and subacute stroke.  Given 

effective treatments, a real-time predictor of outcome can 

produce a paradigm shift in the treatment of stroke in all its 

early stages, and may ameliorate or avoid many of the 

profoundly destructive sequelae of cerebral infarction. 
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