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Abstract: Image fusion is a useful technique toward the better analysis of multimodal medical images. In 
this paper some methods are presented for image registration and fusion with focus on CT and MRI images. 
All proposed methods are Least squares based which are modified by using FFT for faster performance. To 
deal with intensity mismatches between multimodal images, some previous methods are reviewed and a new 
modified method is also provided. The new method proposed, utilizes the combination of two famous 
structural characteristics of images, instead of one, that are gradient and features obtained from phase 
congruency model. We applied the proposed method to CT and MRI images of head and thorax. Results 
suggest the priority of the new proposed method over old ones, due to higher "correctly aligned percent" and 
smaller "mean alignment error", specially for head images. Visualization of the registration is done via 
color-fusion. 
 
Keywords: Multimodal image registration, medical image fusion, analysis of CT and MRI images, 
structural characteristic. 
 
 
1 Introduction 
 
Nowadays, medical imaging is a powerful tool for 
diagnosis and analysis of disease in medicine. 
There are many imaging methods such as 
computerized tomography (CT), X-Ray 
radiography, magnetic resonance imaging (MRI) 
and positron emission tomography (PET), which 
magnify different aspects of human body, and 
consequently help physicians in dealing with 
various diseases. Accordingly the analysis of 
medical images can provide a deeper insight into 
the human body. 
One of the widely-used techniques in medical 
image analysis is "Medical Image Fusion", which 
combines the primary characteristics of a set of 

multimodal images (e.g. CT and MRI) to provide a 
fused image [1]. 
To illustrate the importance of medical image 
fusion, consider a patient who has a brain tumor 
and must undergo a surgical operation for this 
reason. Although a CT scan of his head, and a head 
MRI each provides useful information for a 
surgical plan, but a CT-MRI fused-image provides 
a better visualization of the proximity of the tumor 
to bony structures [2]. As it is obvious, for an 
efficient image fusion, a precise image registration 
is of great importance. To achieve a precise 
registration, it is possible to exclude the tumour 
region in the image registration. We will return to 
this method of ROI-selection (region of interest) 
later in section 2.  



An example of CT-MRI fusion is illustrated in Fig. 
1. In the fused image, bone structures are shown in 
red and tissue structures are in blue. 
In the registration procedure, various similarity 
metrics may be used including [1]: 

1. Cross correlation, 
2. Sum of squared differences (SSD) [2,3], 
3. Mutual information,  
4. Phase correction. 

 

Fig. 1: (A) CT image; (B) proton density-weighted MRI image, (C) 
fused-image 

 
Generally, in the procedure of image registration, 
one of the images undergoes a series of geometric 
transformations, whereas the other one is kept 
unchanged.  For medical images, "scaling" can be 
handled easily, due to the known parameters of the 
imaging systems, and is ignored in this context. 
Finding the optimal "rotation" for alignment of 
medical images is the most challenging one. To 
deal with it, first the SSD method for finding the 
optimal "shift" is introduced, and then by 
considering rotations of few degrees and also using 
some approximations, method is used for handling 
the "rotation" [1, 2]. 
Another issue in the multimodal image registration 
is the intensity difference between images. One of 
previous approaches to this problem is the intensity 
remapping method. In this paper we introduce a 
modified method by utilizing the combined 
structural features of images produced by gradient 
and phase congruency model [4,5].   
After the image registration, image fusion is 
performed as the final step. There are lots of 
methods for fusion. Some of them are introducedin 
[1] and [6]. Here we use color-fusion.  
So in brief, the proposed method in this paper is an 
SSD one which is modified for increasing speed by 
applying FFT.  Moreover, since the structural 

features of images are used, the method is 
independent of pixel intensity, which makes it 
suitable for multimodal images. 
All the underlying theories of this paper and also 
the data specifications are presented in section 2. 
Section 3 contains the experimental results, and 
section 4 is dedicated to discussion and conclusion.   
 
2 Materials and Methods  
 
2.1  Modified SSD Method by Using FFT 
 
In the simple SSD method, the optimal shift for 
alignment of two signals (images), namely f and g, 
is achieved through minimizing the cost function 
defined in Eq. (1) over different shift values of x.   
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As signals (images) f and g may have just partial 
overlap, or we may want to exclude some parts 
intentionally (as hinted in the scenario of section 
1), a weighting function w is imposed on the cost 
function. w is '1' in the region of interest (ROI) and 
'0' outside of it. 
The above problem of least square optimization is 
computationally expensive. However Eq. (1) can 
be expanded to: 
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Since the last term in Eq. (2) is constant (with 
respect to x), it will be ignored in the optimization. 
Using the definition of convolution, the above 
relation is simplified to a new error function E~  as 
below: 
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In order to reduce the computation complexity in 
time domain (and spatial domain for images), Eq. 
(3) is revised in the frequency domain. 
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In the above Eq., ℑ  denotes the Fourier transform. 
By using Eq. (4), alignment error is calculated 
efficiently (50-600 times faster than the simple 
SSD method [3]) for every possible shift, and the 
optimal one is easily obtained. 
 
2.2 Intensity Remapping Method 
 
For aligning signals with different levels 
(brightness for an image) and amplitudes (contrast 
for an image), Eq. (1) fails to provide a desirable 
result. Intensity remapping (IR) is a solution, 
which applies a linear transformation on the signal 
amplitude (pixel intensity) to compensate the 
differences. Thus f will be replaced by s0+s1f, in 
which s0 is the brightness adjustment and s1 is the 
contrast adjustment.  
To take advantage of the matrix algebra, Eq. (1) is 
modified after applying intensity remapping 
transformation as Eq. (5). 
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In the above equation, the term hT(fx)s is an 
arbitrary transformation on the intensities of image 
f. In the IR method: 
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By minimizing the error function with respect to x 
and s, registration is done by including the 
brightness and contrast adjustment. 
The overall method for error minimizing is 
discussed in the next section, after describing 
image rotation. 
  
2.3 Image Rotation 
 
So far, the method for finding the optimal shift to 
register two images is discussed, now we extend 
the method to comply with image rotation. Since 
the image rotation is usually very small (few 
degrees), one can approximate the rotated version 
of f through Eq. (7). 
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We can replace f in IR method by R(f,θ), which 
leads to: 
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So in order to solve the rotation problem, Eqs (5) 
and (9) should be considered together. 
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Now by expanding Eq. (5), omitting uncorrelated 
terms to s and x and using h(fx)=hx for simplicity, 
Eq. (10) will be obtained: 
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For minimizing the error function with respect to s, 
matrix algebra is used and the answer is 
summarized in the linear system of Eq. (11). 
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So the method in short is [2]:  
 

1) set Θ=0, this is total amount of rotation, 
2) g=R(g,Θ), 
3) calculate Ax and bx for every possible shift x 

by using FFT,  
4) solve Eq. (11), and the optimal coefficients 

of s will be obtained,  
5) next to do is to calculate the cost function of 

Eq. (10) for every shift x; take the 
minimum one and record he corresponding 
x and s, 

6) as s is known, due to Eq. (8), θ is calculated 
by s2/s1 and Θ=Θ+θ, 

7) goto step 2 if o5.0>θ , or if 6 iterations are 
not completed, 

8) the solution is x and Θ. 
  
 



2.4 Structural Characteristics of Images 
 
The methods which are discussed so far are only 
applicable when the brightness difference between 
images of interest is small. However for medical 
images of different modalities, due to the intensity 
discrepancies of corresponding tissues (e.g. in CT 
images bone structure are bright, whereas they are 
dark in MRI), this method fails to respond in a 
desired manner. One solution is to use structural 
characteristics of images as a feature space, instead 
of pixel intensities. Two of them are utilized here: 
magnitude of the gradient, which is discussed in 
section of "proposed method", 2.5; and the 
characteristics extracted from phase congruency 
(PC) model (this method is taken from [1]).  
The PC model, which is based on local energy of 
the signal (image), claims that important structural 
characteristics of a signal (image) occur at the 
point where the fourier components are maximally 
in phase. Due to the simple definition of the model 
in Eq. (12), if all fourier components are 
completely in phase, the ratio of Eq. (12) would be 
1, which is the highest possible. Otherwise, local 
energy (numerator) would be less than the sum of 
fourier amplitude (denominator) and the ratio will 
fall beneath 1. 
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In the case of 2D signals, Eq. (12) is calculated in 
several orientations, and the structural features are 
obtained by using the principal moments of PC (for 
a complete overview of phase congruency model 
see [4] and [5]). 
If we denote the structural image of A by mA, all 
necessary is to replace f and g in Eq. (5) with mf 
and mg , and the remaining procedure is intact. 
 
2.5 Proposed Method 
 
Based on the discussed topics till now, two new 
modified methods will be proposed in this section. 
First we used magnitude of gradient as a structural 
feature, instead of PC-model feature. The formula 
is presented in Eq. (13) and it postulates that 
significant features are found where magnitude of 
the gradient is maximum. 
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In the second approach, we tried to take advantage 
of both structural features and so we defined a 
combined cost function as in Eq. (14). Here kPC 
and k∇ are considered equal. 
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In the above Eq., mf and mg are PC-structural 
features of f and g, as mentioned in 2.4, f∇ and g∇ 
are magnitude of gradient as in Eq. (13), and h() is 
the vector function introduced in Eq. (9). The same 
as the method explained in 2.3, this cost function 
should be minimized and optimal shift values (x 
and y), and optimum rotation will be obtained. 
 
2.6 Data  
 
To measure the efficiency of the discussed 
methods, two set of images are used. Each set of 
images contains one CT image plus three MRI 
images (PD, T1 & T2-weighted). One set includes 
the images of an axial slice of the brain and the 
other contains the images of a coronal slice of the 
thorax. All images are 8-bit grayscale having 
256× 256 pixels. They are selected from the 
datasets of “Visible Human Project” from the 
“National Library of Medicine”. 
 
2.7 Testing Method 
 
For each image set, there exists a “gold standard 
optimal shift” that perfectly aligns CT and MRI 
images and is achieved by hand (trial and error). 
These optimal shifts are used for quantitative 
evaluation of the algorithms. The threshold of 3 
pixels for alignment error (distance between the 
obtained optimal shift and gold standard one) is 
used [1].  
Testing procedure is the same as in [1]; for each 
image pair, 100 random ROIs (w function in Eq. 
(1)1 ) are produced, and “mean alignment error” 
and “correct aligned percent” are calculated for the 
below methods: 

1) Intensity remapping (IR) 
2) Intensity remapping with phase congruency 

model as a structural feature (PC) 
3) Intensity remapping with gradient as a 

structural feature (GRAD) 

                                                 
1 For better comparison of the methods' efficiency, a 
unique series of 100 ROIs is used for all the different 
cases in each image set. 



 Table 1: The performance of CT-MRI alignment for head and thorax images. Mean alignment error is the 
Euclidian distance between gold standard optimal shift and the obtained shift. 
Correctly aligned percent are those registered with error of less than 3 pixels 

Results of [1] are also provided in ( ).  

 IR GRAD(+IR) PC(+IR) PC+GRAD(+IR) 
Mean error in 
terms of pixels 

Correctly 
aligned % 

Mean error 
in terms of 

pixels 

Correctly 
aligned % 

Mean error 
in terms of 

pixels 

Correctly 
aligned %  

Mean error 
in terms of 

pixels 

Correctly 
aligned % 

Head  
CT to pd 11.4(80.7) 13(30) 1.48 100 1.4(1.4) 100(100) 1.47 100 
CT to t1 9.8(111) 12(0) 17.99 80 2.93(10.7) 76(90) 3.68 80 
CT to t2 22.8(92.4) 1(15) 2.75 98 1.7(9.7) 100(85) 1.71 100 
Thorax  

CT to pd 12.0(23.2) 74(37.5) 5.9 60 2.4(4.5) 86(57.5) 2.6 72 
CT to t1 31.4(47.6) 44(35) 24.8 66 15.3(20.7) 66(62.5) 19.7 66 
CT to t2 45.9(73.45) 32(17.5) 35.3 54 24.7(50.8) 64(30) 22.5 60 

 
4) Combined PC-GRAD cost function. 
  

All the implementations are performed in 
MATLAB. 
 
3 Results 
 
Numerical results for the efficiency of the 
registration methods are shown in Table 1. 
Numbers in parenthesis are the ones obtained in [1] 
and are provided for comparison. The first column 
of each method corresponds to the mean alignment 
error and the second column is the correctly 
aligned percent. Greater correctly aligned rate 
means method is more "ROI-independent". 
Besides Table 1, results of color-fusion are also 
available in Figs 1and 2. 

 
Fig. 2: Fused-image of a proton density weighted MRI image and a 

CT image of thorax. 

Fig. 3 is also an example where all the methods 
failed to register the images correctly, this 
condition happens when the ROI lacks enough 
structural features, which is obvious in Fig 3. 

4 Discussion and Conclusions 
 
In this paper a comparison of different SSD-based 
methods for multimodal medical images is 
performed. After reviewing the required theories, 
previous methods and also the modified proposed 
method are applied on two sets of data and the 
results are provided in Table 1.  
In a view of Table 1 again, some differences 
between obtained results and previous results from 
[1] is clearly seen. This difference is due to the 
rotation-management that we used [2]. Thus some 
improvements in results of "IR" and "PC" is made, 
especially in the field of "mean alignment error". 

 

Fig. 3: Examples of conditions where registration methods failed, the 
corresponding ROI are depicted too. 

For head images, we see that the "GRAD" results 
are comparable to "PC" results, and since "PC" is 
more time-consuming, "GRAD" may be preferred. 
However if computational load of registration is of 
less importance, then the new proposed method 
("PC+GRAD") is completely promising and it 
contains both the advantages of the PC and GRAD 
methods (high correctly aligned rate percent and 
low mean alignment error). For the thorax datasets, 
it seems that the combined cost function does not 
work properly and PC alone works better. It is also 



observable that "IR" somehow works well for 
alignment of CT and pd-weighted MRI, which is 
due to similarity of intensity in this image pair. 
For image fusion, in this paper we only visualized 
the results with color fusion; other method such as 
using mathematical or logical operation (+,-, AND, 
OR,…) could also be used to amplify the desired 
feature. 
Another suggestion for future trends in image 
fusion is to wavelet-decompose the registered 
images into "approximation" and "detail" 
coefficients, perform a weighted summation on 
approximation terms and detail terms, and then 
reconstruct the image by inverse wavelet 
transform. This way there is direct control on the 
contribution of each image to approximation and 
detail.  
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