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Abstract 
Nowadays classifying the brain white matter fibers 
into the distinct object named as bundles inside 
which the same characteristics on local diffusivity 
or shape and length of fibers exist, is of a growing 
interest in neuro-imaging fields. In this paper we 
present a method for segmenting the fiber bundles 
using Spherical Harmonic Coefficients (SHC) 
which describe diffusion signal obtained from 
High Angular Resolution Diffusion Imaging 
(HARDI) protocols. Using SH coefficients in 
defining of a similarity measure being used in 
speed function term in Hamilton-Jacobi equation 
with Levelset framework as an implicit numerical 
solution, we have shown that our method has 
advantages over methods using similarity 
measures based on DTI field by proper 
propagating of the front within fiber crossing 
areas. Without any assumption about diffusion 
profile or model by dealing with just diffusion 
signals instead of diffusion probability function 
most used in other studies, out results on synthetic 
data as well as real HARD MRI data are surely 
closer to reality.  

Keywords: Fiber bundle Segmentation - Spherical 
Harmonics Coefficients- Levelset- Diffusion MRI. 

I. Introduction 
Diffusion Magnetic Resonance Imaging is an 
approved non-invasive clinical tool to investigate 
white matter tissue structures within the brain by 
qualifying macroscopic effect of water molecules 
diffusion which is barred or hindered by these 
microscopic structures. Basser et al.[1,2] in 1994 
assumed a three dimensional Gaussian profile for 
diffusion of water molecules and modeled its behavior 
by a symmetric positive semi-definite matrix i.e., 
tensor. As the tensor model can only describe 
Gaussian diffusion behavior which is valid for free 
diffusion or isotropic restricted diffusion in all 

directions or anisotropic diffusion of just one major 
white matter fiber population, it fails to model higher 
order anisotropies in heterogeneous areas where more 
than one fiber population exist. 

For this reason some clinically feasible acquisition 
imaging schemes with great amount of diffusion 
synthesizer gradients were introduced and named as 
High Angular Resolution Diffusion Imaging i. e., 
HARDI. Moreover new model-based analysis such as 
Multi Tensor fitting[4] or Spherical Deconvolution 
[5,6], non-linear Spherical Deconvolution [7], or 
PASMRI[8] and some model-free analysis like q-
ball[9] were proposed to analyze HARD data in order 
to obtain Orientation Distribution Function or ODF 
from which main diffusion directions can be 
extracted. However, using ODF instead of pure 
diffusion signal needs some simplifications and 
approximations which make ODF calculation be 
almost infeasible as a preprocessing step.  

For visualizing of tensor or diffusion signal or profile 
within the brain white matter, some primitives were 
introduced, however reconstructing of virtual fiber 
paths within the brain is of more interest which 
presents virtual anatomical connectivity within the 
brain and gives better understanding of underlying 
diffusion profiles in voxels. For obtaining fiber paths, 
one can do individual fiber tracking or tractography 
and extract curvilinear trajectories in three-
dimensional space in DTI or HARD data fields. 
Another alternative which is typically more robust 
than tractography, is segmenting of volumetric 
regions each contains similar local diffusivity 
characteristics or similar fibers in shape and length 
together as a distinct object named as fiber bundle. 
The task of classifying the brain white matter fibers 
can be performed in one of two methodologies: 
Clustering fibers resulted from tractography into the 
bundles[10, 11]  or segmenting the bundle via front 
propagation based on local properties of diffusion 
tensor, signal or profile[12- 19]. Since clustering 
methods rely on tractography algorithm results, they 
shall not be properly validated if tractography step is 
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not performed well especially streamline types in 
critical situations like kissing, branching, merging and 
crossing status. However segmenting the bundle via 
front propagation is a more powerful tools especially 
in above mentioned status. Most of these studies 
concentrate on scalar quantities like anisotropy maps 
derived from tensor data regardless of complete tensor 
information [12], while some other studies try to 
benefit from the whole information contained in 
diffusion tensor[13- 16]. They typically extract some 
similarity measure between successive tensors and the 
insert these measures into a region based 
segmentation framework like levelset [17]. When 
segmenting white matter regions in DTI, the similarity 
measure emphasizes anisotropic regions. Since tensor 
model specifies a spherical or planar tensor shape to 
the multimodal diffusion profile in heterogeneous 
areas where more than one major fiber population 
exist, the similarity measure between neighboring 
tensors prevents the front from propagating from a 
voxel of one fiber population with prolate tensor 
shape into the next voxel of the same fiber orientation 
population crossed by other fiber population with 
spherical tensor shape obtained by tensor model.  

In a different study by increasing problem dimension, 
A position-Orientation Space or POS has been 
introduced by combining Euclidian spatial domain 
with spherical ODF space from HARD data where 
two crossing fiber population in spatial domain with 
different orientations can be simply resolved by 
applying a front propagation method in Levelset 
framework in this 5 dimensional space. Although 
dimensional reinforcement of the problem causes 
some disadvantages like increasing of computational 
costs.    

In [19], fiber bundle segmentation has been performed 
in POS based on Markovian Random Fields (MRF). 
Assuming some spatial relationship which can be 
modeled by MRF, the goal of this method is to 
estimate a hidden random field of fiber bundles from 
realization of observed ODF profiles with Maximum 
A Posteriori (MAP) formulization and Iterative 
Conditional Modes (ICM) implementation.   

If we expand a spherical function by spherical 
harmonics bases, we will obtain SH coefficients 
which are descriptor features of that function on the 
sphere [20-23]. In this paper we present a method for 
segmenting the fiber bundles using SH coefficients 
which describe diffusion signal obtained from High 
Angular Resolution Diffusion Imaging (HARDI) 
protocols. Using SH coefficients in defining of a 
similarity measure being used in speed function term 
in Hamilton-Jacobi equation with Levelset framework 
as an implicit numerical solution, we have shown that 
our method has advantages over methods using 
similarity measures based on DTI field by proper 
propagating of the front within fiber crossing areas. 
Without any assumption about diffusion profile or 

model by dealing with just diffusion signals instead of 
ODF most used in other studies, out results on 
synthetic data as well as real HARD MRI data are 
surely closer to reality. By applying the proposed 
method on real HARD MRI data, we were capable to 
segment some major fiber bundles as Corpus 
Callosum and Corticospinal as well.  

Having these distinct fiber bundles together, in 
addition to access to a white matter mask composed 
of them, one can avoid of propagating of fibers from 
some bundles to the others and the applied fiber 
tracking algorithm will be more robust against 
crossing, branching and merging situation between 
bundles, themselves. Moreover the results can be used 
as a regularizing term beside data term in fiber 
tracking algorithms. Besides, we can benefit from the 
smoothing property of SH representation of diffusion 
signal in order to reduce imaging noises as outliers 
induced in DWI Images. 

II. Theory 
The expansion of a function on a sphere using 
spherical harmonics is equivalent to the generalization 
of Fourier representation to the spherical coordinates, 
which can be used in many applications [20, 21]. By 
expanding the diffusion signals of HARD data using 
these basis harmonics and calculating the harmonic 
coefficients, it has been proposed a linear method for 
calculating ODF. 

The spherical harmonics, which are represented by 

(l is order and m is phase factor), consist a basis 
for complex functions on the unit sphere, and they are 
defined by the fallowing relation. 
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Therefore, the diffusion signal can be estimated on 
any point of the unit sphere using the spherical 
harmonic coefficients by the following equation. 
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in which cj is the jth spherical harmonic coefficients 
and  is the total number of these 
coefficients. The mathematical relations for 
calculating these coefficients are given by [21]. The 
8
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th order spherical harmonic coefficients in each voxel 
can represent diffusion profiles with maximum 4 
major distinct peaks. Therefore, they can be used 
directly as features to separate voxels with dissimilar 
diffusion signals, and to merge voxels with similar 
diffusion signals. The similarity measure function for 
comparing two diffusion signals S and S’, based on 
the spherical harmonics, has been defined as fallows 
[21]: 
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where ci and ci
’ are the spherical harmonics for signals 

S and S’ ,respectively. 

As we discussed above, the spherical harmonics can 
be used as features for comparison between diffusion 
signals. On the other hand, in segmentation methods 
based on levelset algorithm, it is necessary to define a 
criterion for evolving levelset function. Therefore, in 
the proposed method, by computing spherical 
harmonic coefficients from HARDI data, the 
similarity measure is calculated between neighboring 
voxels using (4) in order to build the speed function of 
levelset algorithm. Then, this procedure is used to 
segment white matter fiber bundles.   

III. Methods 

a) Investigating of SH Characteristics by 
Simulation  
In order to investigate the effect of SH coefficients in 
comparing diffusion signals, an artificial uni-polar 
diffusion signal is rotated between 0 and 90 degree in 
15 degree steps. This rotation is also done on one pole 
of an artificial bi-polar diffusion signal. Then, the 8th 
order SH coefficients of each signal is computed. 
Assuming a reference voxel with one major diffusion 
orientation, (see Table. 1), the simulation results show 
that the similarity measure between SH coefficients of 
the reference voxel and SH coefficients of the other 
voxel with a major diffusion orientation and a 
determined angular difference, is quite equal to the 
similarity measure between SH coefficients of that 
reference voxel and SH coefficients of another voxel 
which has another major diffusion orientation in 
addition of that major orientation. Therefore, the front 
can evolve into that voxel, properly. 

 

Table 1 Spherical illustration of artificial linear and planar 
diffusion signals using spherical harmonics. The similarity with 

reference signal for each signal is also shown. 

Bi-modal Diffusion Signal Similarity 
with 

reference 
signal 

Signal 
profile 

Multi tensor 

Similarity 
with 

reference 
signal 

Uni-modal 
Diffusion 

Signal 
Deg. 

0.956 
 

1.000 0 

0.7616 
 

0.7620 15 

0.3543 
 

0.3621 30 

0.1470 
 

0.1508 45 

0.0628 
 

0.0659 60 

0.0246 
 

0.0250 75 

0.0195 
 

0.0195 90 

b) Implementation of the Proposed Method 
on Artificial Data 
In order to determine the capability of the proposed 
method in segmenting of fiber bundles, an artificial 
pattern of diffusion signals which consists of two 
crossing bundles was created as illustrated in Fig. 1. 
As it can be seen in the crossing region the diffusion 
signals have two major diffusion orientations which 
can be a good criterion for determining the capability 
of the method. For comparison, instead of (4), a 
common similarity measure for tensors is also used in 
levelset algorithm, which is defined as [17]: 
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Finally, by implementing the levelset algorithm using 
two similarity measures (equations (4) and (7)), the 
results show that using SH coefficients the 
segmentation results are enhanced. To quantify the 
results, the correctness of segmentation results is 
calculated using the fallowing relation: 
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In which the So and Sr are the target and resulted 
structures, respectively, and N is the number of voxels 
laying in each structure. In the Table 2 the correctness 
measure for each method is shown. 



 
Fig. 1 Illustration of the artificial crossing pattern for diffusion 

signals with 8th SH. 

c) Implementation of the Proposed Method 
on Real Data 
In order to apply the proposed method on real HARD 
MRI data, a normal subject was scanned by a GE 
Signa Excite1.5T MRI system (General Electric 
medical systems, Milwaunkee, WI, USA) in Stanford 
Lucas Imaging center through a Q-ball Imaging 
protocol with 492 diffusion synthesizer gradient 
scheme and 13 B0 reference images with imaging 
volume dimension equals to 128x128x33 and imaging 
voxel dimension equals to 1.95x1.95x4.5. 

After some preprocessing like applying a Gaussian 
kernel on data, registering diffusion on a reference 
volume and reordering diffusion signals from scanner-
wise to voxel-wise order, we calculate SH coefficients 
with order of 8 to every voxel diffusion signal pro the 
equation introduced in section 1-2.  For segmentation 
task, one must specifies a seed point from each fiber 
bundle which is performed by use of FA(Fractional 
Anisotropy) map and comparing it with an atlas 
including major fiber bundles. As mentioned in 
section 2.2, by calculating the similarity measure 
between neighboring SH coefficients, the speed 
function in levelset framework is obtained. However 
it is not mandatory to calculate the speed function in 
all of imaging volume voxels, since the front 
propagation in every step time depends on only the 
speed function on boundary points. Moreover in order 
to prevent from computational errors, this function 
must be specified in a wide-enough stripe with 5 
points around the boundary [25].   

In Fig 2, the suggested segmentation algorithm results 
for two major fiber bundles i.e. Corpus Callosum and 
Corticospinal Tract have been demonstrated where the 
algorithm is able to isolate these two fibers from 
HARD data field. Due to a better comparison, the 
result of segmentation of Corpus Callosum for two 
similarity measure extracted from SH coefficients and 
tensor are shown with the fiber obtained by streamline 

tractography as a common fiber tracking algorithm 
[26] in Fig. 3. As illustrated, the result of our SH 
coefficients segmentation method is more proper than 
segmentation based on tensor similarity measure. 

IV. Conclusions 
In this paper we presented a method for segmenting 
the fiber bundles using Spherical Harmonic 
Coefficients with order of 8 which describe diffusion 
signal obtained from High Angular Resolution 
Diffusion Imaging protocols, as well. We utilized SH 
coefficients in defining of a similarity measure being 
used in speed function term in Hamilton-Jacobi 
equation with Levelset framework. We have shown 
that our method has advantages over methods using 
similarity measures based on DTI field by proper 
propagating of the front within fiber crossing areas 
without any assumption about diffusion profile or 
model by dealing with just diffusion signals. We 
demonstrated the results of segmentation for Corpus 
Callosum and Corticospinal Tracts as two major fiber 
bundles inside brain white matter. We plan to use SH 
coefficients as a powerful feature descriptor within 
other segmentation frameworks rather than levelset. 

Table 2 results of segmentation correctness for each method. 

T=1 t=0.8 t=0.6 T=0.4 t=0.2 Progress 
time 

0.928 0.782 0.534 0.412 0.092 Tensor 
0.658 0.597 0.519 0.336 0.141 S.H. 

 

 
Fig. 2 results of suggested SH coefficients segmentation algorithm 

for Corpus Callosum and Corticospinal Tracts  

                      (1)                                    (2) 
Fig.3 Comparison between results of suggested SH coefficients 
segmentation algorithm (1) and traditional tensor segmentation 
algorithm (2) (in blue) plus streamline tractography (in red) for 

Corpus Callosum 
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