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Abstract: The integrated analysis of the Electroencephalography (EEG), Magnetoencephalography, 

and functional magnetic resonance imaging (fMRI) are instrumental for functional neuroimaging of 

the brain. A bottom-up integrated E/MEG and fMRI model based on physiology as well as a method 

for estimating its parameters are keys to the integrated analysis. We propose the variational Bayesian 

expectation maximization (VBEM) method to estimate parameters of our proposed integrated model. 

VBEM method iteratively optimizes a lower bound on the marginal likelihood. An iteration of the 

VBEM consists of two steps: a variational Bayesian expectation step implemented using the 

extended Kalman smoother (EKS) and the posterior probability of the parameters in the previous 

step, and a variational Bayesian maximization step to estimate the posterior distributions of the 

parameters. For a given external stimulus, a variety of multi-area models can be considered in which 

the number of areas and the configuration and strength of connections between the areas are 

different. The proposed VBEM method can be used to select an optimal model as well as estimate its 

parameters. The efficiency of the proposed VBEM method is illustrated using simulation results. 

The proposed VBEM method can be used to estimate parameters of other non-linear dynamical 

systems. This study proposes an effective method to integrate E/MEG and fMRI and plans to use 

these techniques in functional neuroimaging.  

 

I. Description of Purpose (Introduction) 

Variational Bayesian framework was used by Friston et al. [1,2] to estimate parameters of their 

proposed dynamic causal model (DCM). However, there are two limitations in DCM. First, its state 

equation is assumed to be noise-free; this is not a realistic assumption. Second, DCM is not an 

integrated E/MEG and fMRI model and models just one modality. To cover these limitations, we 

propose the variational Bayesian expectation maximization (VBEM) method to estimate parameters 

of our multi-area integrated E/MEG and fMRI model. The efficiency of the proposed VBEM method 

is illustrated using simulation results. In conclusion, this study proposes an effective method for 

estimating parameters of non-linear dynamical systems that can be particularly used for the 

integrated analysis of E/MEG and fMRI. 

 

II. Method 

Multi-Area integrated E/MEG and fMRI model: We propose a multi-area integrated E/MEG and 

fMRI model based on our previously developed integrated model [3]. The model is based on two 

connection types: Short-Range Connection (SRC) and Long-Range Connection (LRC). The SRCs 

are related to the connections between minicolumns within the areas. LRCs characterize 

configuration of the multi-area model and describe the connections among the cortical areas. 

Consider a multi-area model which contains N cortical areas where connections among minicolumns 

within and between the areas are specified by the SRCs and LRCs, respectively. Each area contains 
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L uniform minicolumns which are perpendicular to the cortical surface. The following equations 

show dynamics of the multi-area model. 
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where I is 8xL-by-8xL identity matrix,   is the Kronecker product operator, A1, A2, A3, A4, B, and 

C are fixed matrices which depend on some physiological parameters in the model, S(.) is the non-

linear sigmoid function, u is the external stimulus, X is the state vector, w is the Gaussian state noise, 

κn represents the overall neural activities as input of the extended balloon model (EBM) [4] in the 

nth area that generates the fMRI signals in the area, and yECDs contains all equivalent current dipoles 

(ECDs) in the areas that generate E/MEG signal. G
s
 and G

l
 in Eq. (1) contain unknown SRCs and 

LRCs parameters of the model. In addition, hemodynamic parameters of the EBM in each area are 

unknown parameters of the model that can be estimated from the fMRI data. 

 

Variational Bayesian Expectation Maximization Method: Consider a model (say model m) with 

hidden variable x and i.i.d. observed variable y where the unknown parameters θ describe stochastic 

dependencies between the variables. In the Bayesian learning, the following marginal likelihood of 

model m, p(y |m), is maximized.  

 )|,,(  ln)|(ln myxpdxdmyp        (2) 

The marginal likelihood can be lower bounded by introducing free distributions over both hidden 

variables and parameters (qx(x) and qθ(θ)). 
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By considering a particular class of graphical models, conjugate-exponential (CE) models, the 

VBEM algorithm will be more similar to the classical expectation maximization algorithm. The CE 

models satisfy the following conditions. 
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where the sufficient statistics z(.,.) and function  f(.,.) define the exponential family functions, Φ(θ) is 

the vector of natural parameters, η and ν are hyperparameters of the prior, and g and h are the norma-

lization constants. Two steps of the VBEM algorithm for CE models are as follows. 
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where super-script k represents the iteration number. In the linear dynamical model, the solution of 

the Kalman smoother is equivalent to the VB E-step in Eq. (5) [5]. For the nonlinear model 

according to Eq. (1), the solution of the extended Kalman smoother (EKS) is equivalent to the VB E-

step in Eq. (5). We derived the formulation of the variational EKS for the time-variant dynamical 

system in Eq. (1). 

Estimation of the Model Parameters: For a specific model, the locations and configuration of 

connections among its areas are given. Then, the Bayesian framework along with the MEG/fMRI 

data can be used to estimate unknown parameters of the model. Here, G
s
 and G

l
 in Eq. (1) which are 

parameters of the SRCs and LRCs as well as hemodynamic parameters are the unknown parameters 

that can be estimated using the proposed VBEM method and the MEG/fMRI data. For an N-area 

model, G
s
 and G

l
 contain 3xN and 3xNx(N-1) unknown parameters, respectively. Considering five 

hemodynamic parameters in each area, the N-area model has 5xN unknown hemodynamic 

parameters. After preprocessing and assigning a prior distribution to the parameters, the proposed 

VBEM method can be used to estimate the parameters as well as the activation in the multi-area 

model. Following pseudocode shows algorithm of the VBEM method. 

 

1. Initialization 

 Initialize precision hyperparameters (η and ν in Eq. (4)) where unknown parameters of the 

model are: θ ≡{G
s
 , G

l
} 

 Initialize hidden state priors (mean and variance of  the state initial value in Eq. (1)) 

 Initialize hidden state sufficient statistics (z(.,.) in Eq. (4)) 

 Initialize noise hyperparameters 

2. Variational Bayesian M step (VBM) 

 Infer parameter posteriors qθ(θ) 

 Calculate expected natural parameters (Φ(θ) in Eq. (4)) 

3. Variational Bayesian E step (VBE) 

 Infer distribution over hidden state qx(x) 

 extended Kalman smoother (EKS)  

 Calculate hidden state sufficient statistics 

4. Compute the lower bound of the Log-likelihood (F(.,.) in Eq. (3)) 

5. Update hyperparameters 

 Update precision hyperparameters (η and ν in Eq. (4)) 

 Update hidden state priors 

 Update noise hyperparameters 

6. Go to step 2 if F(.,.) is increasing 

III. Results 

Fig. 2-a illustrates the configuration of the LRCs in a three-area model which is used in the 

simulation. Each area contains four minicolumns. Note that the SRCs between minicolumns within 

the areas are not shown. Two SRCs parameters in each area and two LRCs parameters between each 

pairs of the areas are given non-zero values and other six parameters are given zero. 12 unknown 

SRCs and LRCs parameters are estimated using the VBEM method. Using Eq. (1) and given values 
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of the parameters, yECDs as the E/MEG signal in the areas are generated which is shown with the red 

plot in Fig. 3-b. Using the VBEM method, the unknown parameters are estimated. Fig. 3-c shows the 

Log-likelihood of the iterations of the VBEM method. Convergence of the estimated parameters to 

their final values is illustrated in Fig. 3-d. As shown in Fig. 3-e, the estimated values of the 

parameters is in good agreement with the real values of the parameters. In addition, the small 

difference between the estimated and real MEG signals in Fig. 3-b illustrates the performance of the 

VBEM method in estimating the model parameters and the activation map. 

 

IV. Conclusion 

To estimate parameters of our multi-area integrated E/MEG and fMRI model and detect activations 

in the areas of the model, we proposed the VBEM method. This method iteratively optimizes a lower 

bound on the marginal likelihood. The solution of the extended Kalman smoother (EKS) is 

equivalent to the VB E-step in Eq. (5). Using properties of the conjugate-exponential models, we 

derived the formulation of the variational EKS as the solution of the VB E-step. The efficiency of 

the proposed VBEM method is illustrated using simulation results where the real and estimated 

parameters were in good agreement. In conclusion, we propose an effective method for estimating 

parameters of non-linear dynamical systems and used it for integrated analysis of the E/MEG and 

fMRI. 
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Fig 2. Simulation results of the three-area model. (a) Illustration of the LRCs in the three-area model. (b) Normalized 

real (red) and Estimated (blue) E/MEG Signals. (c) Log-likelihood of the estimation. (d) Convergence of the estimated 

parameters to their final values. (e) Real (green) and estimated (yellow) values of the parameters. 
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