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Abstract: Magnetoencephalography (MEG) is a neuroimaging technique for brain activation detection. 
However, this technique does not provide a unique solution due to ill-posedness of its inverse solution. 
Several methods are proposed to improve the MEG inverse solution. Minimum Norm (MN) is a simple 
method whose solution is distributed and biased toward the superficial sources. In addition, its solution is 
sensitive to the noise. Several methods are proposed to improve performance of the MN method. In this 
paper, we propose a method whose solution is less sensitive to the noise and spatially unbiased toward the 
superficial sources. Control of focal solution properties is achieved by specifying a parameter in the 
method. Performance of the proposed method is compared to others using simulation studies consisting of 
single and multiple dipole sources as well as an extended source model. Proposed method has superior 
performance compared to non-iterative methods. Its performance is similar to the iterative methods but 
computational load is lower. 
 
1. Description of Purpose (Introduction):  
Several methods have been proposed to solve the MEG and EEG inverse problem. Minimum Norm (MN) 
is a simple method to solve the MEG inverse problem. Solution of MN is spatially extended, biased 
toward the superficial source locations, and sensitive to the noise [1]. Sensitivity of MN to the noise can 
be reduced using the regularization technique in the Regularized Minimum Norm (RMN) method [2]. 
Weighted Minimum Norm (WMN) was proposed to remove bias of the MN solution toward the 
superficial sources [3]. There are several definitions for the weight matrix in proposed WMN methods in 
the literature. Low resolution brain electromagnetic tomography (LORETA) is an example of the WMN 
method which has good localization but its solution is spatially non-focal [4]. 

Although MN and WMN methods generates spatially extended solutions but their iterative variant can 
provide focal solutions. Focal underdetermined system solver (FOCUSS) is a recursive WMN method 
that generates sparse solution. The weight matrix in this method is updated in each iteration according to 
the previous values of the estimated sources.  FOCUSS is sensitive to the noise and needs initial source 
distribution. In addition, a matrix inversion is required in each iteration of FOCUSS algorithm that causes 
huge computational load as well as sensitivity to the noise. Although some efforts has been devoted to 
reduce the computational load of FOCUSS but its computational load is still significant [5]. 

In this paper, we present a combination method by integrating MN, RMN, and WMN methods. The 
proposed method is less sensitive to the noise, is un-biased toward the superficial sources, and it can 
provide focal solutions for focal activation. Control of focal solution properties is achieved by specifying 
a parameter in the method. Although the proposed method is not an iterative method but it can give focal 
solutions comparable with the FOCUSS. The computational load of the proposed method is considerably 
lower than FOCUSS. Performance of the proposed method is compared to others using the simulation 
studies included single and multiple dipole sources as well as an extended source model. Proposed 
method has superior performance compared to non-iterative methods. Its performance is similar to the 
iterative methods but with lower computational load. 

2. Method:  
MEG forward problem gives the following linear relationship between the dipole sources and the 
measured magnetic signal in the sensors: 

                         nqGb += .                                 (1)                           
where b is the measured magnetic field in M sensors, q represents N dipole magnitudes, G is the M×N 
lead field matrix, and n is the additive noise. MN solution of Eq.(1) in the noise-less condition is 
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represented by bGbGGGq TT ..)(ˆ 1 +− ==  where G+ is the pseudo-inverse of G [6]. For removing bias of 
the MN solution toward the superficial sources, the weighted minimum norm (WMN) method is proposed 
[4]. This method uses the weight matrix W to give more gain to the deep sources. Its solution is calculated 
as bGGWGWq TT +−−= )(ˆ 11 . Although the problem of spatial bias of the MN method is reduced by the 
WMN method, but   its   solution is still non-focal.   Sparse methods like FOCUSS give focal solutions by 
using iterative methods. However, computational load and instability in the presence of noise are 
problems of these methods [4].  

In this paper, we propose a method which is illustrated in Fig. 1 to get a solution without spatial bias, low 
sensitivity to the noise, and low computational load with focal solution. In this method, we compute MN 
and RMN solutions as initial estimation of the next WMN solution. The weight matrix of the WMN 
method in the both first steps is: 

)|ˆ(| 21 ββ orqdiagW =                         (2) 
and in the second step, it is defined as: 

)|)1((| α
RWMNWMN qssqdiagW −+=           (3) 

where q̂  is the initial estimation of the source magnitude which is calculated in the previous step (the 
solution of MN or RMN) and 1β , 2β and α  are the parameters that control sparseness of the solution. 
The second step in the proposed method is to combine solutions of the WMN from each MN and RMN 
initializations. We use other parameter, s, as the combination parameter ( 10 ≤≤ s  ). We should use 
regularization in presence of noise, but using regularization in the noise-less condition removes spatial 
details of the solution. Thus, for low signal to noise ratio (SNR), a small value for s should be chosen and 
vice versa. 
 
3. Simulation Results:  
In this section, performance of the proposed method is compared to other conventional methods. The 
simulated magnetic field is generated using current dipoles. Computational load of the proposed and other 
methods are compared using simulation results. Moran and his colleagues developed “MEG-Tools” 
software to implement and demonstrate the MEG inverse solution [7]. We utilize this software to perform 
our simulations in this section. We use the head model extracted from the anatomical Magnetic 
Resonance Images (MRI) of a human subject's head. The MRI consists 316 coronal slices contains 
256×256 pixels and voxel size is 0.9375×0.9375×0.9375 mm3. 

Arrangement of the MEG sensors is the same as the MEG imaging device from 4D Neuroimaging (San 
Diego, CA, USA) and contains 148 gradient sensors. In order to co-register coordinates of the MEG 
sensors with the anatomical MRI data, about 3,000 digitization points are marked on the subject's scalp. 
The scalp is laser scanned to accurately mark these points. The Cartesian coordinates of these points 
along with the locations and directions of the MEG sensors are expressed in a common coordinate 
system. On the other hand, anatomical data from MRI are used to distinguish different head segments and 
to find scalp surface for co-registering the digitization points on it. The lead matrix is obtained from 
symmetric spherical head model whose brain tissues radii (including gray matter, white matter, skull, and 
head skin) are taken from the anatomical MRI data.  

We use “localization error” to   compare performance of the methods. The localization error is defined as 
the distance between the dipoles with maximum moments in the simulated and estimated source spaces. 
After criteria definition, performance of the proposed method with other methods is compared using 
multiple simulation studies. In the first simulation, a single active simulated source is considered as 
shown in Fig. 2. The reconstructed source from some conventional methods and the proposed method in 
noiseless condition are shown in Fig. 3. As shown in Fig. 3, MN and LORETA have smooth spatial 
solutions, but FOCUSS and our combination method give focal solutions at the correct location. 
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In the second series of simulation, we compare performance of the proposed method with other methods 
to reconstruct deep and superficial sources. We considered 15 different locations for a single active dipole 
shown in Fig. 4 and compare the errors of different methods in reconstruction. This simulation is 
performed for both noisy and noiseless conditions. Additive Gaussian noise is added to the measured 
signal. The localization error is illustrated in Fig. 5. Computational load of the proposed is compared with 
other method. The computational load of the proposed method is less than FOCUSS and similar to MN, 
WMN, and LORETA. With this low computational load, the proposed method shows excellent 
performance in reconstructing focal or extended sources and deep or superficial sources in different SNR 
conditions. 

4. Conclusion 
There are several methods in the literature for solving the inverse problem of MEG. The MN method is 
taken as a benchmark in all cases. Solution of MN is spatially extended, biased toward the superficial 
source locations, and sensitive to the noise. Its sensitivity to the noise can be reduced using regularization 
techniques, e.g. Regularized Minimum Norm (RMN) method. By using Weighted Minimum Norm 
(WMN), the bias of the MN solution toward the superficial sources can be reduced. However, the RMN 
and WMN methods generate non-focal solutions. The iterative FOCUSS algorithm provides a focal 
solution but it is sensitive to the noise and its computational load is high. In this paper, we proposed a 
three-step weighted method to provide a focal solution with low computational load in the presence of 
noise. Extensive simulation studies showed appropriate performance of the proposed method for both 
focal and extended sources in different SNR conditions. Low computational load of the proposed method 
was shown with respect to the iterative methods like FOCUSS.  
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Fig. 1. Illustration of the block diagram of the proposed combination method. 

 
 

 
Fig. 2. Illustration of the location of the simulated single active dipole which is used in first simulation. 
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Fig. 3. Reconstruction of the single dipole shown in figure 2 using different methods. For the proposed method, s=0.5, α=4, and 

β1 = β2 = 2 are used. 
 
 
 

 
Fig. 4. Illustration of 15 different locations of the active dipoles simulated for evaluating the performance of the proposed method 

and other methods to reconstruct deep and superficial sources. 
 
 
 

 
Fig. 5. Localization errors for deep and superficial sources in the noiseless condition. Negative and positive values of the x axis 
represent dipoles in the left and right hemispheres, respectively. Top row shows the sparseness errors of the MN, LORETA, and 

FOCUSS methods. Bottom row shows the sparseness errors of the proposed method. Solid, dash, and doted lines represent 
solutions of the proposed method with (β1 = β2 = 2, α=2), (β1 = β2 = 4, α=2), and (β1 = β2 = 8, α=8), respectively. 


