
  

  

Abstract—Understanding the primates’ visual system has 
been one of the challenging problems of different groups of 
scientists for years. Though many studies, from physiology and 
neuroscience to computer vision, are done on different aspects 
of visual processing in the cortex, a comprehensive 
computational model of visual cortex is still missing. We have 
implemented a computational model of object recognition in 
ventral visual pathway in our previous work. This hierarchical 
model covers visual areas V1/V2, V4/PIT, and AIT sending 
inputs to the Prefrontal Cortex (PFC) for categorization. To 
extend our model, in this work, we have added a simple model 
of motion detection in neurons of areas V1 and MT of the 
dorsal stream to our previous model. This has enabled the 
model to perform another principal function of the visual 
cortex, i.e., motion perception.  

I. INTRODUCTION 
T is confirmed that cells in different areas of the visual 
cortex are specialized for different types of visual 
information, such as motion, form, and color, and have 

different properties. Ungerleider and Mishkin (1982) 
showed that the visual information is processed in two 
separate pathways. The ventral pathway extends from V1 to 
inferior temporal cortex (IT), including V4, and is known to 
perform object recognition. The dorsal pathway begins in 
V1 and turns upward to the posterior parietal area, including 
the middle temporal area (MT) and is responsible for 
location and motion perception [1].  

However, some scientists believe that computational 
architecture of the cerebral cortex is very similar from one 
neocortical area to another, but the inputs to every cortical 
area is quite different. This idea is successfully used in 
motion analysis model of [2]. The object recognition model 
of [3] is also based on an extension of the organization of 
simple and complex cells in the striate cortex of the 
primates, proposed by Hubel and Wiesel (1968). 

Towards construction of a complete mathematical model 
of visual processing in the visual cortex, we combine 
biologically motivated models of different visual cortical 

 
Manuscript received July 5, 2008.  
M. Gheiratmand is with the Electrical Engineering Department, K.N. 

Toosi University of Technology, Tehran 16315-1355, Iran (phone: 98-21-
22674284; fax: 98-21-88785081; e-mail: m.gheiratmand@ ee.kntu.ac.ir). 

H. Soltanian-Zadeh is with the Control and Intelligent Processing Center 
of Excellence, Electrical and Computer Engineering Department, University 
of Tehran, Tehran 14395-515, Iran, School of Cognitive Sciences, Institute 
for Studies in Theoretical Physics and Mathematics (IPM), Tehran, Iran, 
and Image Analysis Laboratory, Radiology Department, Henry Ford Health 
System, Detroit MI, 48202 USA (e-mails: hszadeh@ut.ac.ir, 
hamids@rad.hfh.edu). 

H. Khaloozadeh is with the Electrical Engineering Department, 
K.N.Toosi University of Technology, 16315-1355 Tehran, Iran (e-mail: 
h_khaloozadeh@kntu.ac.ir). 

areas. First, the extended HMAX object recognition model 
[3] is implemented to simulate the function of neurons in 
areas V1/V2, V4/PIT, and AIT along the ventral pathway. 
Some enhancements and simplifications are done on the 
model to improve the processing time and performance of 
the model. In the next step, we add a simple model of 
motion detection in the areas V1 and MT to extend our 
model of visual cortex. In this work, only component 
direction selective cells are modeled using the energy model 
of [4]. For this part, we use parameters which are consistent 
with those defined for the object recognition model. 

Other object recognition systems are investigated in [3] 
and [5], but they all lack the simultaneous physiological 
plausibility and high performance, achieved by the extended 
HMAX model proposed in [3], [5], [6]. The fact that 
parameters in this model are not tuned to obtain the optimal 
performance, but are tuned to match the physiological 
properties of the neurons in the corresponding areas [5], [6], 
along with the high performance of model to input images of 
the real world, makes it a solid frame to construct our 
inclusive model on it. Some works are done to add 
feedbacks and attention mechanisms to the HMAX model 
[7]. Though achieving good performance and decreasing the 
response latency, [7] uses only the V1 layer of the HMAX 
model, which makes it farther from the biological visual 
system. 

Considerable works are done on motion analysis in the 
cortex by Heeger, Movshon, Simoncelli and others. 
Movshon proposed a two stage hypothesis for the motion 
analysis by neurons in area MT [1], [8]. Some neurons in 
area V1, like most of the neurons in MT are component 
direction-selective, responding only to components of a 
pattern moving preferably perpendicular to their orientation 
axis [1], [9]. About 20% of the MT neurons are pattern 
direction-selective which compute the global motion of the 
object [1]. These cells receive inputs from the component 
cells of areas V1 and MT. In [8], both direction-selective 
cells in V1 and direction and speed (velocity) selective 
pattern cells of MT are modeled using a similar sequence of 
operators including: linear filtering, half-square rectification, 
and divisive normalization. The cascade Model described in 
[9] is a relative model of [8] fitted to the responses of 
individual MT neurons. 

In this work, we do not address the binding problem, as 
the visual information is processed through separate paths, 
which receive separate types of inputs. In future work, we 
may use a common input for both processes.   

II. MODEL IMPLEMENTATION 
Fig. 1 shows a block diagram of the proposed model 
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along with the corresponding areas of each block in the 
visual cortex.  

A. Object recognition model of ventral pathway 
The object recognition model proposed in [3] is a feed-

forward hierarchical quantitative model of object 
recognition that accounts for the very first milliseconds of 
processing in the ventral stream of primate visual cortex. In 
its simplest form, the model has four layers: S1, C1, S2, and 
C2. The model extracts shift- and scale-invariant features 
from an input image and sends it to a trained classifier to 
decide about its object category. In this work, we have 
trained the model for two objects, but the model is tested on 
101 object categories [3], [5]. Details of the implemented 
HMAX model are described in Appendix.  

Our investigations on the role of each C1 frequency band, 
shows that the existence of all the bands necessarily do not 
improve the classification performance. We have also 
investigated the effect of using different patch sizes to 
produce S2 RBF neuron centers. In general, features of 
intermediate sizes work better; because, compared to larger 
patches, they are more flexible in matching a greater number 
of inputs, and compared with smaller patches, they are more 
selective to the desired object [10]. To run the feature 
selection algorithm, we have used the first scale band of C1, 
corresponding to the first two scale bands of S1 cells. We 
have also executed the algorithm on the S2 features 
produced by using the second patch size (8×  8). 

1) Feature selection: Features in Layer S2 are chosen 
randomly from a set of positive images. As a result some 
features might not be useful for classification, and increases 
the response latency at the same time. To lessen these 
drawbacks we have applied a sequential backward feature 

selection algorithm to the randomly chosen prototypes of 
Layer S2. We have omitted 30% of the worst features from 
the primary set of 100 S2 neurons. This, in addition to 
reducing the processing time, has led to an increase in the 
classification performance. Other methods such as k-Means 
clustering were also examined to divide the S2 features in 
two useful and bad features. Due to the highly random 
characteristic of the features, no reasonable results were 
obtained. As the output values of the model are either 1 or 0 
(belonging or not belonging to an object category) training 
the RBF network is also not a practical method of improving 
the S2 prototypes. 

B. Motion detection model of dorsal pathway  
We have used the motion energy model of Adelson and 

Bergen [4], to provide our model with the ability of motion 
analysis. This model simulates the characteristic of some 
cells in area V1, and most of the cells in area MT of the 
dorsal pathway. These cells are component direction-
selective, showing response to motion in a specific direction 
[1]. Pattern direction-selective cells in the area MT, which 
are selective to the general motion of the object, receive 
input from the component direction-selective cells of V1 and 
MT.    

By now we have modeled V1 orientation-selective cells, 
having spatial receptive fields. We should now produce 
spatiotemporal receptive fields. These receptive fields are 
simply produced by multiplication of temporal and spatial 
impulse responses. These kinds of separable spatiotemporal 
responses are physiologically and psychophysically 
plausible [4]. The motion energy model implementation is 
described in the following stages: 

1) Spatial filters: We have used pairs of sine and cosine 
Gabor functions with the same properties used in the 
modeling of ventral stream as the spatial response of the 
cells. This is done in order to stay consistent with the object 
recognition model and its physiologically tuned parameters. 
Reference [4] has used the second and third Derivatives of 
Gaussian to produce a pair of quadrature spatial filters. 
Though a sine and cosine pair of Gabor functions are often 
considered as a quadrature pair, we have removed the DC 
component of the cosine Gabor function in order to produce 
a refined quadrature pair. Fig. 2 shows a sample quadarture 
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Fig. 2.  A quadrature pair of spatial Gabor filters with biologically 
tuned parameters. 

 
Fig. 1. Block diagram of the visual processing model. The 
corresponding visual areas of each part are included. 



  

pair of Gabor filters. Details of the Gabor function is 
described in Appendix. 

2) Temporal filters: we have used linear temporal filters 
introduced in [4], which are said to be plausible 
approximations to filters inferred psychophysically. These 
filters have the form of (1) where n takes values of 3 and 5. 
Temporal filters are actually weighting functions that 
combine the spatial responses of cells in the past to produce 
the response at the present moment.       
 

].)!2()(!1)[exp()()( 2 +−−= nktnktkttf n  (1) 
 

3) Spatiotemporal Filters: These kind of spatiotemporal 
cell responses are produced by multiplying spatial and 
temporal filters with the above mentioned forms.  

4) Direction selective Spatiotemporal filters:  The filters 
illustrated in Fig. 5 are produced by summation and 
subtraction of the spatiotemporal filters of Fig. 4.  

Each quadrature pair of left-ward and right-ward filters 
then operates on the spatiotemporal input. The outputs of 
each pair are then squared and added to obtain the oriented 
energy in right and left direction as in Fig. 6 (c) and (d). To 
construct a unit that shows motion in both directions, the 
outputs of the oriented energy modules are subtracted to 

construct the opponent energy motion. In the output of an 
opponent energy unit, the light parts indicate the motion in 
rightwards and the dark parts show leftward motion as in 
Fig.6 (b).  

5) pattern motion selective cells: As the pattern direction-
selective model of Simoncelli-Heeger [8] is proved to be one 
of the best models which correctly matches the responses of 
a large fraction of cells in area MT [11], we are about to use 
a model based on [8] to make our system pattern motion 
sensitive. This architecture is biologically plausible and can 
compute velocity (both speed and direction). The final block 
in the MT box represents this part.   

By modeling direction-selective cells, and adding them to 
the V1 part of the model, we now have a more complete 
representation of the cells in area V1, which is proved to 
carry out both modes of computation i.e. Max and energy 
model [12].   

III. EXPERIMENTS AND RESULTS 

A. Stimulus 
To test the object recognition model, we have used 

Motorbikes and Background datasets from the CalTech5 
image database available at: 

 http://www.robots.ox.ac.uk/~vgg/data/data-cats.html. 
Ten sets of randomly selected train and test images, 
including 90 (40 positive and 50 negative) and 100 (50 
positive and 50 negative) images respectively, were used 
and the classification performance was averaged over these 
sets. All images are inverted to grayscale and resized to 140 
pixels in height as in [3].  

The inputs to the motion sensitive model were 
spatiotemporal representations of moving bars or edges, 
such as those shown in Fig. 6 (a). 

B. Results 
The classification performance of the object recognition 

model with 16 S1 scales, 4 sizes of patches, and 100 S2 
features has been 96%. For two S1 scales, one size of patch 
(8×8), and selected S2 features, we have achieved the 
performance of 95% along with a considerable decrease in 
the processing time. Using similar parameters without S2 
feature selection, results in the classification performance of 
92%. 

Additional experiments were also done to investigate the 
sensitivity of the extracted C2 features of the object 
recognition model. Gaussian noise with variances of 0.01 
and 0.1 corresponding to SNR=5 and SNR=0.5 were added 
to the input images. (SNR is calculated as the ratio of the 
signal power to noise power: NSig PPSNR = .) The results 

showed that, addition of noise with variances of 0.01 and 0.1 
results in a considerable decrease of 10% and 14% in the 
classification performance. The performance of the SVM 
classifier on the features extracted directly from the input 
images using PCA was quite robust; no change for SNR=5, 
and a 1.15% decrease for SNR=0.5 was observed.         
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Fig. 3.  Two temporal filters duplicating the temporal responses of 
direction selective cells in areas V1 and MT. 

Fig. 4. Spatiotemporal filters produced by multiplication of the 
sample spatial and temporal filters. 

Fig. 5. A pair of leftward and rightward direction-selective 
spatiotemporal filters. 



  

The output of the motion energy model in area V1 and the 
component cells of area MT are illustrated in Fig. 6. The 
output of the opponent energy mode in Fig. 6 (b) shows the 
motion in both right-ward and left-ward directions, while the 
oriented energy responses in Fig. 6 (c)–(d) can only detect 
motion in either right-ward or left-ward direction. 

IV. CONCLUSION 
In this work, we have combined a model of object 

recognition in the ventral visual pathway with a simple 
model of component motion detection in the dorsal pathway 
and presented a block diagram of the processes executed in 
the cells of each biological area.  

This work is to be extended by adding a pattern motion 
sensitive model of area MT to the block diagram presented. 
Also, the inputs to the dorsal and ventral pathways of the 
model, which were different in this work, are to be united in 
the form of a moving complex pattern. In addition, 
computational models of other visual cortical areas such as 
area V3 in the dorsal pathway can be added in order to 
provide the model with other abilities such as color 
perception. Feedbacks from higher areas to the lower areas 
in each visual stream, and the interconnecting signals 
between areas of these two are also of considerable 
importance in constructing a more inclusive model of the 
visual cortex.  

To integrate quantitative models of different areas of the 
visual cortex, the parameters of different parts should be 
adjusted in a way that they preserve consistency with each 
other. To this end, the parameters in each part of the model 
can be tuned based on the psychophysical and physiological 
properties of the neurons in that visual area.  

APPENDIX 
The details of the object recognition model and some 

additional notes about extending the V1 units for the motion 
sensitive model are described below. 

S1 Layer 
Spatial receptive fields of simple cells in the primary 

visual cortex are represented with a bank of Gabor filters as 
[3], [6]:  
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where jθ  is the preferred orientation of the cells, and is  is 

size of the filters ranging from 77×  to 3737 ×  which is 
equivalent to a visual angle of oo 06.119.0 −  [13]. Aspect 
ratio γ  is equal to 0.3, and the relation between the 
effective width σ  and the wavelength λ  with the filter size 
is empirically optimized as [6]: 
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Where ϕ  is the phase offset which is set to zero for the 
spatial orientation-selective receptive fields. For direction-
selective V1 cells, ϕ  takes two values of 0 and 90 degrees 
to produce a quadrature pair for the motion energy model.  

C1 Layer 
C1 units correspond to V1 complex cells and combine the 
outputs of the S1 units with a MAX operation. For each 
orientation, the maximum operator acts on the output of 
every spatial frequency scale of the S1 units with a grid cell 
of size 8×8 to 22×22 with the steps of 2. This operation 
results in producing invariance to the position of the object 
(or object parts such as edges) in the image. C1 units also 
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Fig. 6. (a) A stimuli for the motion detection model, consisting of a 
moving edge presented in the x-t spatiotemporal space. (b) The 
motion opponent energy output. The light parts demonstrate motion in 
rightward and the dark parts demonstrate the leftward motion. When 
the edge is stationary, the response equals zero. (c) The output of 
rightward motion energy unit. This unit does not cover the leftward 
motion. (d) The output of the leftward motion energy unit. 



  

take a max over every two adjacent frequency scales in 
order to make the resulting features scale- invariant. 

S2 Layer 
This layer is a set of RBF neurons that compute the 

difference of the calculated C1 features from a new input, 
with the fixed prototypes set as the centers of the neurons. 
These prototypes are once set in the learning stage by 
sampling from a set of 100 positive images. Sampling is 
done using patches in four sizes of 4×4 to 16×16 with 
steps of 4, which are placed on random positions in the C1 
images extracted from each input image.   

C2 Layer 
This layer takes maximum over the outputs of the S2 

units. As a result a shift- and scale-invariant, and object-
selective feature vector with dimension equal to the number 
of S2 neurons is produced for each input image.  

Classifier 
The extracted C2 features from train and test image sets 

are passed to a classifier to be trained. Like the function of 
area PFC, the classifier can then decide for the category of 
new input images. We have observed that a linear SVM 
produced better responses in comparison to kNN (with 
different numbers of k) and nonlinear SVM. More 
biologically plausible architectures can be replaced with the 
SVM classifier [10], which is used here. 
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