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Abstract 
The purpose of this study was to segment the brain structures in temporal lobe epilepsy (TLE) using 3D T1-
weighed magnetic resonance images (MRI). Twelve patients with average age of 43 and standard deviation of 
12 years were studied. We used specific preprocessing stages through optimized voxel-based morphometry 
(VBM) with additional spatial normalization steps to obtain more accurate results. Specific template creation, 
excluding nonbrain voxels by morphological operations, image registration, gray matter (GM) segmentation, 
and correction for volume changes are different stages of spatial normalization in optimized VBM. All of the 
gray matter voxels were labeled using an anatomical atlas to create individual regions for each of the brain 
structures. In our study, we examined hippocampus, amygdala, and entorhinal cortex which are most 
affected by TLE. The proposed approaches are evaluated by comparing automatic and expert’s segmentation 
results and confirming their similarity.  
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1. Introduction 
Many neurodegenerative diseases exhibit volume and 
shape changes in specific brain regions. Quantitative 
volume measurements of the brain structures are useful 
for the diagnosis and prognosis of neurological 
disorders [1,2]. These studies have clinical values in 
diagnosis stage, decision about surgeries and treatment 
evaluations. Manual delineation of brain structures 
suffer from difficulties of defining anatomical 
landmarks and boundaries, as well as obtaining results 
with low reproducibility and objectivity.  

For evaluating the volume changes of these 
structures, first we should segment them from 3D MR 
images. The accuracy of segmentation procedure has a 
great impact on the final results for volumes of the 
structures. The volumes of structures will help us to 
find abnormal side of the brain by comparing the 
structures’ volumes in the two sides of the brain. 

In this study, we focus on automatic segmentation 
of brain structures from MR images of temporal lobe 
epilepsy (TLE) patients. Volumetric MRI studies of 

brain structures in TLE have showed brain 
abnormalities associated with this disease [3]. Among 
all of the brain structures, those in the temporal lobe of 
the brain are most affected by TLE. We develop 
automatic methods for the segmentation of the 
hippocampus, amygdala, and entorhinal cortex which 
are among the most challenging structures in the brain 
to segment.  

First, preprocessing stages are applied to the image 
data. These steps are the ones used for optimized 
voxel-based morphometry (VBM), which is an 
automated technique that performs voxel-wise 
statistical analysis of MR images [4]. Our method 
includes spatial normalization, gray matter (GM) 
segmentation, exclusion of non-brain voxels, and 
compensation of spatial normalization effects. Then, all 
of the gray matter voxels are labeled using an 
anatomical atlas to create individual regions for each of 
the brain structures. By making the maximum 
probability atlas, corresponding voxels of 
hippocampus, amygdala, and entorhinal cortex are 
obtained.  
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The scheme is evaluated through two experiments. 
First of all, we measure the similarity between 
automatic and expert’s segmentation results through 
Dice’s coefficient and gain satisfactory results. Second, 
we compared similarity coefficients of our proposed 
method with those obtained by standard methods of 
preprocessing of data. 

Novel contributions of this work are two-fold. First, 
we use a specific atlas-based procedure for 
segmentation of brain structures. Secondly, we 
segment the entorhinal cortex automatically. This 
structure is an important memory center in the brain 
and is one of the first areas to be affected in 
neurodegenerative diseases like Alzheimer’s and TLE. 
Thus, developing automatic methods for segmentation 
of this structure is a valuable work. To our knowledge, 
none of the previous studies segmented this structure 
automatically. 

The present paper is organized as follows. In 
Section 2, the specifications of data and image 
acquisition protocol are described. Also, we discuss 
about the preprocessing stages and our atlas-based 
labeling method. Section 3 presents the segmentation 
results and evidences for their accuracy. Finally, 
section 4 concludes the paper. 

2. Materials and Methods 

2.1. Image Acquisition and Subjects  
Magnetic resonance images were acquired using a 
General Electric 3 Tesla Signa system (GE Medical 
System, Milwaukee, WI). All patients underwent 
coronal T1-weighted MRI study using a spoiled 
gradient-echo (SPGR) sequence with 

msTETITR 500/7.1/6.7// = , flip angle = o20 , field 
of view (FOV) = 2200200 mm× , matrix size = 

256256× , pixel size = 2781.0781.0 mm× , and slice 
thickness = mm0.2 .  
Twelve patients were included in this study (6 female, 
6 male). They are adults with an age average and 
standard deviation of 43 and 12 years, respectively. 

2.2. Spatial Processing 
In this section, we first describe the stages of standard 
method for preprocessing of the structural data, which 
are also used for standard VBM.  Then, we mention the 
need for using modified techniques and describe the 
steps of optimized VBM.  

2.2.1. Standard VBM 
The standard VBM method consists of multiple stages. 
At its simplest case, preprocessing of data in VBM 
involves spatially normalizing images into a common 
stereotactic space. This is obtained by registering each 
of the images to the same template image by estimating 
the 12-parameter affine transformation. This is 
followed by segmentation of GM from MR images 

based on voxel intensities. The next step is smoothing 
the GM segments with Gaussian kernels. By the central 
limit theorem, smoothing the data will render the errors 
more normal in their distribution and ensure the 
validity of inferences based on parametric tests [5].  

However, there were some problems with the 
standard VBM that led to establishing modified 
procedures [6],[7]. Evaluation of segmented images 
from standard VBM protocol shows that some small 
areas in GM segmented images like scalp fat are often 
misclassified as gray matter. Besides, if one subjects’ 
structures has a very different volume compared to the 
template, then its volume changes dramatically during 
the warping step. So, the obtained volume is not 
correct. The method addressed in the next section will 
reduce these undesirable effects. 

2.2.2. Optimized VBM 
For reducing the effect of nonbrain regions on GM 
segmented images, some additional preprocessing steps 
can be applied to exclude nonbrain voxels prior to 
normalization and subsequent segmentation.  

A so-called optimized VBM was introduced in [8], 
which includes automated brain extraction steps as 
well as correction for volume changes. The steps of 
this method are as follows. 

Template Creation. All of the structural images are 
normalized to a stereotactic space. Then they are 
segmented to GM/WM partitions. This, segmentation 
is performed by the probability maps, used as Bayesian 
priors. After smoothing the segmented images, the 
final GM/WM templates are created by averaging all 
the smoothed segmented normalized images. This 
stage is the same as that of standard VBM protocol. 

Exclude nonbrain voxels. All of the segmented gray 
matter images are eroded to remove nonbrain voxels 
from skull, scalp, and venous sinuses. This erosion is 
followed by conditional dilation. The obtained images 
are extracted gray matter and white matter partitions in 
the stereotactic space. 

Normalization. The extracted GM/WM partitions 
are normalized to gray matter and white matter 
templates obtained by standard VBM. 

Modulation. Spatial normalization may cause some 
specific regions of the brain to grow and other regions 
to shrink. This effect can be compensated by 
multiplying voxel values of spatially normalized GM 
images by relative volume of GM before and after 
normalization. Indeed, this work is a modulation 
procedure. The changes of regions in the normalized 
image in relation to the original image make a 
deformation field. The gradient of this deformation 
field is its Jaccobian matrix and consists of the 
following matrix in the 3D space. 
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where [ ]zyx   and [ ]zyx ′′′    are the vectors of 
coordinate in the original and normalized images, 
respectively. 
Thus, we can use the determinant of Jaccobian matrix 
as a measure of relative volumes of the GM before and 
after normalization. 

2.3. Atlas-Based Segmentation 
To obtain a rough segmentation of brain structures, 
each individual gray mater voxel is labeled based on 
the MNI atlas and the transformation matrix gained in 
preprocessing step. Then, by computing the voxel by 
voxel average of the same structure label from a group 
of subjects, statistical probability anatomy maps are 
created. Finally, the label of the most probable 
structure is stored at each voxel of the maximum 
probability atlas. We extract the corresponding voxels 
of the hippocampus, amygdala, and entorhinal cortex 
and obtain three-dimensional segmentation of these 
structures. 

3. Data Analysis and Results 
Preprocessing of structural MRI data was performed 
using SPM5 (Wellcome Department of Imaging 
Neuroscience, London, UK; www.fil.ion.ucl.ac.uk). 
We accomplished both standard and optimized VBM 
methods for investigation of data using the steps 
described in the previous section. The images were 
normalized to the Montreal Neurological Institute 
(MNI) T1-weighted template using 12 parameter affine 
transformation. The algorithm works by minimizing 
the sum of the squared errors between each image and 
template. Also, the images were corrected for the bias 
effects. The MR images are usually affected by smooth 
artifacts that are not problems for visual inspection, but 
can make problems for automated procedures. Fig. 1 
shows the MR images after and before Intensity non-
uniformity correction.  
 

 
Figure 1. Structural MR images. Left: Original image, Right: 
Image after intensity non-uniformity correction.  

After segmentation of GM and extracting brain by 
morphological operations, a 3mm×3mm×3mm full-
width half-maximum (FWHM) isotropic Gaussian 
kernel is used to smooth the GM partitions for 
subsequent statistical analysis. The GM images 
obtained by standard and optimized VBM are shown in 
Fig. 2. It is clear that some nonbrain regions are 
removed using the optimized method. Also, some WM 
regions that are misclassified as GM, are removed in 
optimized method (see arrows). 

Then, all of the gray matter voxels are labeled using 
an anatomical atlas and the transformation matrix 
obtained in the normalization process. This creates 
individual anatomical atlases for each of the structural 
images. After transforming the individual atlases into 
stereotaxic space, average of same structure label 
derived from individual atlases are computed. Finally, 
the corresponding voxels of the desires structures are 
extracted by assigning the label of most probable 
structure at each voxel of the maximum probability 
atlas. 

 

 
Figure 2. GM partitions. Left: Standard VBM, Right: 
Optimized VBM. 
 

We have applied the proposed method to the 
coronal MR images to segment the hippocampus, 
amygdala, and entorhinal cortex. Figures 3-5 show the 
segmentation results. We use manually segmented 
images by an expert to evaluate the automatic 
segmentation results. 

To obtain a quantitative measure, we have 
calculated the Dice’s coefficient as a similarity 
measure:  
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where X  and Y are the sets that we want to measure 
their similarity. For measuring the similarity between 
automatic segmentation and expert’s segmentation, we 
used the following measure: 
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where automaticn  is the number of pixels in the 
structure segmented automatically, manualn  is the 
number of pixels in the structure segmented manually, 
and overlapn  is the number of pixels that belong to both 
of them. We have measured this coefficient for each of 
the three structures. For evaluation of the results, the 
brain slices that include these structures have been 
selected from MRI studies of each of the twelve 
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subjects. Table 1 presents the mean and standard 
deviation of the similarity measures between our 
automatic segmentation method and expert’s 
segmentations for the twelve subjects. Also, we have 
calculated the similarity measures between the manual 
segmentation and the atlas based segmentation proceed 
by standard VBM method. These results are also 
shown in Table 1 and reflect the superiority of our 
proposed method. Also, we computed the volumes of 
hippocampus, amygdala, and entorhinal cortex in the 
two sides of the brain, for all of the patients. The 
results are presented in Table 2. 
 
Table 1. Mean and standard deviation of similarity measures 
for the left and right hippocampus, amygdala, and entorhinal 
cortex, as segmented by the automatic method and the expert 
for brain slices that include these structures, acquired from 12 
subjects. The optimized method is our proposed atlas-based 
segmentation with additional preprocessing stages.  

 stdAveage ±  

 Optimized 
Method 

stdAveage ±  

Standard 
Method 

Right Hippocampus 0.89 ± 0.04 0.86 ± 0.05 

Left Hippocampus 0.90 ± 0.03 0.86 ± 0.04 

Right Amygdala 0.84 ± 0.04 0.81 ± 0.05 

Left Amygdala 0.87 ± 0.06 0.85 ± 0.06 

Right entorhinal 
cortex 

0.80 ± 0.05 0.78 ± 0.04 

Left entorhinal cortex 0.79 ± 0.05 0.75 ± 0.06 

Overall 0.85 ± 0.04 0.82 ± 0.05 

4. Conclusion 
In the present work, we used the integration of a 
specific atlas-based labeling method and optimized 
VBM to segment hippocampus, amygdala, and 
entorhinal cortex in 3D MR images of patients with 
TLE.  

Obtaining a precise segmentation of these 
structures, is the first and most important step in 
quantitative evaluation of the brain structures in TLE. 
Volumetric MRI studies of the brain structures have 
clinical values in diagnosis stage, decision about 
surgeries, and treatment evaluations. 

The accuracy of segmentation procedure will lead 
to precise results for volumes of structures. Having the 
volumes of structures will help us to discover the side 
of seizure by comparing the structures’ volumes in the 
two sides of the brain. 

When segmenting an anatomical structure, having 
priori information about the shape of the structure and 
its boundaries can significantly improve the final 
segmentation results. Priori information about the 
structures was obtained by registering the images to an 
atlas and labeling the voxels accordingly.  The 
proposed method has successfully segmented the 
entorhinal cortex which is a very small and difficult-to-
segment structure in the coronal view of the brain. 

 

 
Figure 3. Automatic and expert’s hippocampus segmentation 
results for two different slices on the coronal view. First and 
third columns show automatic segmentation, while second 
and fourth columns show manual (expert’s) segmentation 
results. 
 

 
Figure 4. Automatic and expert’s amygdala segmentation 
results for two different slices on the coronal view. First and 
third columns show automatic segmentation, while second 
and fourth columns show manual (expert’s) segmentation 
results. 
 

 
Figure 5. Automatic and expert’s Entorhinal Cortex 
segmentation results for two different slices on the coronal 
view. First and third columns show automatic segmentation, 
while second and fourth columns show manual (expert’s) 
segmentation results. 
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Table 2. Volumes of hippocampus, amygdala, and entorhinal cortex for all of the patients in the two sides of the brain. 
      Structure 

Subject          
Left  

Hippocampus 
Right  

Hippocampus 
Left  

Amygdala 
Right  

Amygdala 
Left  

Entorhinal 
Right  

Entorhinal 
Patient #1 3.02 3.43 1.68 2.12 2.32 2.51 
Patient #2 3.44 3.25 2.23 2.57 2.48 2.68 
Patient #3 3.28 2.84 2.25 2.34 2.12 1.87 
Patient #4 2.93 3.37 1.55 1.37 1.96 1.62 
Patient #5 3.54 3.72 2.32 2.65 2.56 2.71 
Patient #6 3.21 2.79 1.97 1.63 1.87 1.43 
Patient #7 2.92 2.58 1.53 1.83 2.23 2.45 
Patient #8 3.79 3.38 2.28 2.42 1.81 1.56 
Patient #9 3.24 2.71 2.33 1.89 1.78 1.9 
Patient #10 3.03 2.66 1.84 1.58 2.38 2.04 
Patient #11 2.69 2.50 1.71 1.83 2.54 2.39 
Patient #12 3.22 3.53 2.21 2.64 2.31 2.55 
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