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ABSTRACT 

 
In this work, we develop an atlas based method for 
automatic segmentation of white matter fiber bundles. To 
this end, we propose a new method for registration of 
diffusion tensor (DT) images using DTI information which 
is also used in the fiber tracking process, and we also 
propose a strategy for segmenting the fiber bundles using 
the new registration method and a probabilistic white matter 
atlas.  We apply the registration method to 13 real DTI data 
sets and evaluate the results by comparing the level of 
alignment of all fibers. Then, we use the proposed strategy 
to segment 10 major fiber bundles in one of the subjects. 
One of the advantages of such a method is the robustness of 
the results thanks to using prior knowledge. The segmented 
results can be used for comparing and evaluating other fiber 
bundle segmentation methods. 
 

Index Terms— DTMRI, Atlas based segmentation, 
White matter fiber bundles, Image registration 
 

1. INTRODUCTION 
 
Diffusion Tensor Magnetic Resonance Imaging (DTMRI) is 
a noninvasive tool for determining white matter connectivity 
in the brain. DTMRI adds to conventional MRI the 
capability of measuring the random motion of water 
molecules, referred to as diffusion [1]. The most important 
distinctive characteristic of DTMR images is that they have 
directional information of microtubule living structures. 
This can help us to determine white matter fiber bundle 
tracts, which can be helpful in diagnosing white matter 
diseases. Many methods for segmentation of fiber bundles 
have been proposed. Generally, the results of these methods 
are not similar due to using different strategies in each step 
of the segmentation process. On the other hand, atlas based 
image segmentation is a powerful method which benefits 
from prior knowledge, so it gives more robust and reliable 
results. However, this method has been rarely applied to 
segmentation of fiber bundles because of limitations of 

working with DTMR images. In this work, by proposing a 
new method for registration of DT images, we introduce an 
atlas based fiber bundle segmentation strategy. 

Atlas based image segmentation consists of two main 
parts: a segmented and labeled image, called “atlas”, and an 
image registration algorithm, which is used to align the atlas 
image to the subject image. The quality and performance of 
both of these parts determine the quality of the results. In [2] 
a good quality fiber tract atlas has been constructed which 
can be used in automatic segmentation. In this work, we use 
such an atlas. 

Image registration is a critical step in atlas based 
imaged segmentation methods. However, applying 
conventional image registration methods to the DTMR 
images without considering orientation information of these 
images does not yield acceptable results. Thus, it has been 
proposed to use tensor reorientation methods when applying 
spatial transformation to the DTMR images [3], [4].  

General registration using the whole tensor images 
generates better results [5]. However, for specific 
applications, certain parameters of the DTMR images can be 
more helpful in enhancing the results and reducing 
computational complexity. As the purpose of this study is to 
segment fiber bundles using registration, and in addition, 
most of fiber tracking algorithms use Fractional Anisotropy 
(FA) and Principal Eigen-Vector (PEV) maps, using these 
parameters are more appreciate. In [6], the DTMR images 
are registered based on FA images. However, until now, no 
one has used FA and PEV maps jointly for registration.  

The aim of is this work is to develop an atlas based 
segmentation strategy for labeling white matter fiber 
bundles in two steps. First, we propose a new cost function 
for registering DT images based on aligning the fibers. We 
use this cost function on a piece-wise affine registration 
algorithm and also propose a method for combining the 
computed sub-transforms. Then, we use this registration 
method and a previously constructed probabilistic atlas of 
fiber bundles to label extracted fibers from DTMR images. 

 
 



2. METHODS 
 
2.1. DTI Registration 
 
The aim of an image registration method is to find a 
transform between two images which aligns one of them to 
the other and maximizes the similarity between the 
transformed and target images. For DT images, the 
similarity function should consider the orientation of the 
tensors. In this paper, we use a combination of two features 
of DT images: FA map and the eigen-vectors corresponding 
to the maximum eigen-values of the DT images, which we 
call ‘PEV map’. We chose these two features because many 
fiber tracking methods use them and also, the aim of this 
work is to propose a registration method for atlas based 
fiber bundle segmentation. The proposed cost function is an 
integral of two terms in each voxel: one for measuring the 
difference between FA values and the other for measuring 
the difference between the angles of PEV: 
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where F and E are the FA and PEV maps respectively, 
corresponding to the subject image, represented by ‘s’, and 
the reference image, represented by ‘r’. h(.) represents the 
transform function of the spatial points x, and Q is the 3×3 
rotation matrix computed from the transform h(.) for 
reorienting the Eigen-vectors, and finally, Ω is the region 
where the function is computed. Note that we call the 
moving image as ‘reference image’ and the target image as 
‘subject image’. The second part of this integral measures 
the angle differences over all voxels. Therefore, voxels with 
a low FA value and a high angle difference may cause the 
integral to compute a wrong measure. This can be 
compensated using the FA value of each voxel, Fr(x). On 
the other hand, the two terms of this integral compute the 
differences by two different methods. So, their values may 
not be in a same range. Therefore, they must be weighted by 
a proper weight, ω. This cost function can be minimized 
using gradient descent methods because its derivative terms 
can be computed analytically. 
 
2.1.1. Piecewise Affine Registration 
 
In this work, we assume that the transform h(.) is linear and 
can be expressed by an affine transform. An affine 
transform, Ap(.), can be expressed by 12 parameters: 3 
parameters for rotation (q), 6 for deformation (s), and 3 for 
translation (t). Transformed point of x is:  
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where Q is the 3×3 rotation matrix with 3 independent 
parameters, S is the 3×3 deformation matrix with 6 

independent parameters, T is the 3×1 translation vector, and 
finally, p is the whole unknown parameter vector [q, s , t]. 

In the piecewise affine registration, the images are 
divided into nx×ny×nz equal size sub-images and for each 
corresponding pair of sub-images (Ωs

ijk and Ωr
ijk, i=1,…, nx, 

j=1,…, ny, k=1,…, nz) the cost function in (1) is minimized 
to find an affine transform parameters pijk for that region. In 
this work, we use a Conjugate Gradient (CG) algorithm to 
minimize (1). We also used an Evolutionary Algorithm 
(EA) to find the general region of the optimal parameters 
before applying the CG algorithm. 

 
2.1.2. Estimating Transform Function 

 
The remaining problem is: how to combine the resulting 
sub-transforms to build the final transformed image. This 
problem arises mainly in the border voxels of the sub-
images. Reference [4] solves this problem by finding new 
sub-transforms for those voxels using interpolation between 
neighboring sub-transforms. However, this solution only 
considers limited number of neighbors to estimate the 
transformed border voxels. In [7], a method for estimating 
the transform function using a linear combination of Radial 
Basis Functions of some control points has been proposed:  
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where x is the coordinate of a spatial point in the reference 
image and y is the estimated corresponding point in the 
subject image, and {xi, i=1,…,N} are N control points in the 
reference image. The equations for computing coefficients ai 
and b have been calculated in [7]. This method has been 
applied on the scalar images for example FA images, but for 
DT images some modifications are needed. Therefore, for 
transforming PEV images, we compute the reorienting 
rotation matrix using the following equations. 

Suppose for each voxel, the nonlinear function in (3) 
can be approximated by an affine transform, i.e., 
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where Fx=Qx.Sx is a linear transformation matrix. 
Differentiating both sides of (4) with respect to x gives, 
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where Jf(x) is the Jacobian matrix of function f(.). The 
rotation matrix can be estimated by (6) [3], and finally, the 
transformed image Et(.) of the reference image Er(.) can be 
expressed by (7), which consists of two transforms: spatial 
transform and reorienting transform. 
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We consider a grid of points in the reference image, for 
example 8 corner points of a cube with half size in each 
dimension, centered on each sub-image and calculate the 
transformed points using the corresponding sub-transforms. 
Then, we employ these points as control points to estimate 
transformed image using the discussed method. 

 
2.2. Registration Evaluation 
 
The aim of the proposed registration algorithm is to be 
applied in an atlas based segmentation of fiber bundles. So, 
the strategy of evaluating the performance and capability of 
the method should consider the fibers. Thus, we compare 
the extracted fibers of the subject and transformed images. 

In order to extract the fibers from the FA and PEV 
images, we use Dti-Studio software [8]. In this software, 
fibers are calculated based on the Fiber Assignment by 
Continuous Tracking (FACT) approach which is based on 
line propagation. This algorithm has 3 user defined 
thresholds: two for FA values and one for the angle. We 
chose both FA thresholds equal to 0.3 and the angle 
threshold equal to 70 degree. 

Suppose the extracted fiber sets of the transformed and 
subject images are Ft:{lt

1, lt
2, …, lt

n} and Fs:{ls
1, ls

2, …, ls
m}, 

respectively. n and m are the number of the fibers in the two 
sets. Each fiber li is a sequence of points. To compare the 
fiber sets, we define a measure as fallows: 
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where H(li
s,lj

t) is the Euclidian based distance between fibers 
li

s and lj
t which is defined as the average of pointwise 

minimum Euclidian distances between the fibers. 
 
2.3. Atlas based Fiber Bundle Segmentation 
 
To show the capability of the proposed method in automatic 
segmentation of fiber bundles, we used a probabilistic atlas 
of 10 major fiber bundles constructed at Johns Hopkins 
University [9]. We registered this atlas to a subject image 
and then transformed the label maps to it. Then, the 
extracted fibers from the subject image were labeled based 
on the transformed probabilistic labeled atlas. For this 
purpose, the probability of belonging each fiber fi to each 
bundle Bj, i.e., P(fi|Bj) is computed using (9) and then, each 
fiber is assigned to the bundle with the highest probability 
(Bayesian Decision). In (9), we assumed that each fiber fi 
goes through separate voxels vi(k), where k=1,…,L. 
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3. RESULTS AND DISCUSSION 
 
In this work, we used 13 DTMR image volumes acquired at 
Henry Ford Hospital, Detroit, MI using a 1.5T GE MRI 
(General Electric medical systems, Milwaunkee, WI, USA) 
from 13 healthy volunteers. The resolution of voxels in 
these data sets was different (0.9375×0.9375×3, 
0.9375×0.9375×3.2, and 0.9375×0.9375× 5 mm). Therefore, 
we interpolated these images to get images with isotropic 
resolution of 1.875 ×1.875×1.875 mm and size of 
128×128×80 voxels. Then, for each data set, tensor images 
and corresponding FA and PEV maps were computed using 
the method of [1]. 

To evaluate the proposed method for DT image 
registration, we select one of the data sets as the subject 
image and registered the other 12 images to it. Then, we 
extracted the fibers for each of the transformed image and 
calculated the dissimilarity between them and the fibers 
extracted from the subject using (8). In the registration cost 
function, (1), we selected ω=0.1. To investigate the effect of 
measuring the angles of PEV maps in the cost function 
(second term in (1)), we also chose ω=0 and repeated the 
test. In addition, we implemented the registration using the 
whole tensor [4] and then extracted the fibers for 
comparison. The results of applying this strategy are shown 
in Table 1. For better illustration, a typical result of applying 
the methods is shown in Fig. 1. It can be seen from this 
figure and Table 1 that using FA and PEV maps, registration 
results are enhanced. It seems strange that using less data 
the results are better. However, the fact is that the fibers are 
extracted only from the FA and PEV maps, which we used 
them in the registration. Thus, it is reasonable that the fibers 
are aligned more closely. 

 

 
(a)                           (b)                  

           
                (c)                             (d)                             (e) 
 

Fig. 1. Axial view of (a) reference image, (b) subject image, (c) 
and (d) transformed images computed from the registration 
using (c) the whole tensor and the proposed method with (d) 
ω=0 and (e) ω=0.1. The extracted fibers are shown with 
colored points. Note that the proposed method with ω=0.1 has 
aligned the fibers more accurately. 



The result of segmenting the fiber bundles for one of 
the data sets using the probabilistic white matter atlas is 
shown in Fig. 2. As this figure shows, the fibers are well 
clustered and segmented, and the results are reliable due 
to using prior knowledge of the atlas. Therefore, these 
results can be used for evaluating other fiber bundle 
segmentation methods such as fiber clustering methods 
where they suffer from weak strategies for evaluating the 
segmentation results. 
 

4. CONCLUSION  
 
In this paper, we conducted an atlas based method for 
automatic segmentation of white matter fiber bundles in two 
steps: 1) registration of DT images using the same 
information as that used in the fiber tracking process; and 2) 
segmentation of the fiber bundles using the proposed 
registration method and a probabilistic white matter atlas. 
We evaluated the registration method using 13 real DTI data 
sets by comparing the level of alignment of all fibers. The 
results show the superiority of the proposed method for 
aligning the fibers. Then, we used the strategy to segment 10 

major fiber bundles in one subject. One of the advantages of 
such a method is the robustness of the results thanks to 
using prior knowledge. One of the applications of this 
strategy is that the results can be used for comparing and 
evaluating other fiber bundle segmentation methods. 
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Table 1. Results of computing fiber dissimilarity (equation 
(10)) between the subject fibers and the fibers extracted from 
each reference image and the corresponding transformed 
images computed from the registration using the whole tensor 
and from the proposed method with ω=0 and ω=0.1. 
 

Reference 
Image 

Fiber Dissimilarity 
Before 

Registration 
Whole 
Tensor 

ω=0 ω=0.1 

#01 15.76 11.12 09.48 07.88 
#02 08.83 07.89 07.45 07.09 
#03 11.37 09.32 08.97 07.88 
#04 08.61 07.53 07.14 07.03 
#05 10.58 09.21 09.04 08.16 
#06 32.71 19.18 16.12 14.43 
#07 12.37 11.04 10.57 09.72 
#08 17.29 14.77 12.24 10.98 
#09 24.18 20.22 18.47 15.39 
#10 12.32 12.15 11.91 11.30 
#11 24.22 19.98 17.42 15.13 
#12 18.77 13.21 10.97 09.25 

Overall 16.42 13.22 11.64 10.35 
 

 
 
Fig. 2. Results of atlas based segmentation of 10 major fiber bundles for a typical subject. Corpus Callosum Forceps Major 
(CCFma), and Minor (CCFmi), Antenior Thalamic Radiation (ATR), Inferior Fronto-occipital Fasciculus (IFO), Cingulum 
Cingulate gyrus (CGC), and Hippocampus (CGH), Corticospinal Tract (CST), Superior Longitudinal Fasciculus (SLF), 
Inferior Longitudinal Fasciculus (ILF), and Uncinate Fasciculus (UNC). 
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