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Abstract: We propose a three-dimensional, 

nonparametric, entropy-based, coupled, multi-shape 

approach to segment subcortical brain structures from 

magnetic resonance images (MRI). The proposed 

method uses PCA to develop shape models that capture 

structural variability. It integrates geometrical 

relationship between different structures into the 

algorithm by coupling them (limiting their independent 

deformations). On the other hand, to allow variations 

among coupled structures, it registers each structure 

separately when building the shape models. It defines 

an entropy-based energy function which is minimized 

using quasi-Newton algorithm. To this end, probability 

density functions (pdf) are estimated iteratively using 

nonparametric Parzen window method. In the 

optimization algorithm, analytical derivatives are used 

to improve speed and accuracy. Quantitative results 

show the improvement in the segmentation quality due 

to the integration of the coupling information into the 

segmentation process. 
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1. Introduction 
Medical image segmentation is the most 

important step in visualization, surgical guidance 

and planning, diagnosis and quantitative 

measurement ‎[1]. However, many important 

structures in medical images do not present a clear 

boundary for segmentation and have variations 

between different subjects. In addition, imaging 

methods have limitations such as low signal-to-

noise ratio (SNR), partial volume effects, and 

field inhomogeneities ‎[2]. These problems 

decrease image segmentation accuracy and make 

it a complicated problem. Several methods have 

been introduced in the literature to overcome 

these limitations. Yet, there is no general-purpose 

method for segmentation of all structures.   

A major category of the methods 

proposed for the segmentation of brain structures 

from magnetic resonance images (MRI) optimizes 

an energy function with several parameters that 

represent to the underlying shapes. An exciting 

approach for the optimization of the energy 

function is based on the partial differential 

equations. These equations are defined from the 

derivatives of the energy function with respect to 

the model parameters. Kass et al ‎[3] introduced 

the first work in this category which has been 

improved by others in recent years. For the shape 

representation, parametric active contours and 

geometric active contours have been used. In the 

definition of the energy function, earlier methods 

use the boundary information for the structures of 

interest ‎[4]. Later methods use regional 

information such as intensity histogram 

(parametric and nonparametric, offline or online) 

or variance of an area ‎[5]. Others combine 

boundary and regional information ‎[6]. Recent 

methods benefit from a priori knowledge about 

the structures of interest. This makes the 

segmentation process robust to the imperfect 
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image conditions ‎[7]-‎[8]. For the methods 

developed based on the a priori information, a 

registration process is essential to integrate the 

prior model into the segmentation process.  

In addition, the anatomical structures in 

the brain are related to the neighboring structures 

through their location, size, orientation, and 

shape. An integration of these relations into the 

segmentation process improves accuracy and 

robustness as shown in ‎[9]-‎[11]. The 3D 

deformable model introduced in ‎[9] assumes 

multi-variate Gaussian statistics for the 

parameters of the prior coupled shape model of 

multiple structures. In ‎[10], Litvin et al introduced 

shape distribution as a new concept for coupled 

object segmentation. Their prior shape model is 

constructed from a family of shape distributions 

of related features. Their method is 2D and its 

extension to 3D is not reported yet. Addition of 

new terms in their energy function leads to 

challenges in the calculation of the derivatives for 

curve evolution.  

In this paper, we present a method based 

on entropy information of intensities. We add the 

flexibility of transformation to the coupled shapes, 

by enhancing the model construction process. We 

separate shape and pose variability. This is 

because inclusion of both poses and shape 

variability in a PCA based model generates huge 

variability and limits the model’s benefits for 

segmentation. In other words, co-variations of 

shape and pose in the training datasets are too 

complex that may not be captured well by PCA. 

We align each of the shape classes in the training 

datasets individually to extract co-variations 

between shape classes without considering their 

spatial locations (poses). We use completely 

online pdf estimation, updated during iterations of 

the optimization algorithm. We use pre-register 

test datasets for segmentation. We use quasi-

Newton method which is much faster and more 

robust for high dimensions than the steepest 

descent method.  

In terms of gradient estimation for the 

optimization process, we calculate them 

analytically to benefit from their higher speed and 

accuracy. 

 The rest of the paper is organized as 

follows. Section II explains our shape model and 

its properties. In Section III, we explore our 

energy function and the proposed method for its 

optimization. Experimental results are presented 

and discussed in Section IV. Finally, in Section V, 

conclusions of our work are presented. 

 

2. Shape Model 
In many segmentation methods, a shape model is 

used where richer models generate more accurate 

results. Powerful methods for shape 

representation are based on distance function, 

implicit representation, and relationships among 

different shapes, including pose, orientation, and 

other geometrical relations ‎[12].  Tsai, et al ‎[11] 

use PCA to extract co-variations among different 

structures. Bijari et al ‎[12] use symmetry 

properties of structures for segmentation. In this 

paper, we use shape relation and individual 

transformations for each structure for 

segmentation. To extract shape relation, we apply 

principal component analysis (PCA) on the 3D 

training datasets. To reach accurate results, we 

individually align each structure of interest in the 

training datasets.   

 

2.1 Alignment 
In knowledge based segmentation methods that 

use shape variation, alignment is a critical step. 

This procedure has four important constituents: a 

transformation matrix, a metric to compare 

similarity of the moving and fixed (reference) 

images, an interpolator to compute intensities at 

points with non-integer coordinates, and an 

optimizer to find the optimal transformation 

parameters. For 3D objects, several 

transformations such as similarity, affine, and 

Euler can be used for alignment. We use 

similarity transform with 7 parameters that 

include a scaling, 3 rotations, and 3 translation 

parameters. For transformation of points, we use: 
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where T, R, and S are the translation, rotation, and 

scaling matrices, respectively, t  is a vector of 

translation in 3D, θ  is the rotation vector with 

three parameters, s  is the scaling parameter, 

       R R R R
x x y y z z

  θ  .  For the metric, 

several options are found in the literature. Since 

our goal is to align each structure in the datasets 

individually, we use a labeled 3D image that 

represents the desired structure with one 

(foreground) and other pixels with zero 

(background). The metric in our implementation 

is the cardinality metric that computes percent of 

pixels that are not matched between the moving 

and fixed images. This metric is equal to zero 

when all of the pixels are matched.  



For interpolation of binary images, we use 

a nearest neighbor interpolator.  For the optimizer, 

since the proposed metric is non-differentiable, 

we use an optimizer that does not need 

derivatives. The Nelder–Mead (amoeba) method 

is a popular direct search method for minimizing 

unconstrained real functions with our desired 

property ‎[13]. This method is based on the 

comparison of function values at the 1n   

vertices of a simplex where n  is the number of 

parameters to be optimized. The algorithm 

changes simplex vertices through reflection, 

expansion, and contraction operations to find an 

improving point. 

 Using the above methods, we extract shape 

variability of the desired structures for model 

construction as explained in the following section. 

 

2.2  Implicit Parametric Shape 

Representation 

As stated in ‎[7] and ‎[11], implicit parametric 

shape representation has advantages such as 

computational efficiency, accuracy, capturing 

wide range of shape variability, and handling 

topological changes. We use a distance map for 

shape representation that is zero on the boundary 

of a shape and in other points is the Euclidian 

distance from the boundary (negative inside, 

positive outside). After extraction of the distance 

maps of m desired structures for n  different 

training datasets ( k
i shows the distance map of 

the thk structure of the thi dataset), we subtract 

the mean distance map of each structure, 

computed by averaging of the training datasets 

( k ), from each of the n signed distance maps to 

remove similar parts in different shapes and show 

them with 
k

i
 . We use these n m  maps to show 

variability of different structures in the training 

dataset. We collect n column vectors of size 

x y z
m N N N   and use them to extract 

n eigenvectors for each of the m structures and 

show their variability ( k
i ).  There will be up to 

n eigenvectors of size 
x y z

m N N N   . 

  To allow limited, robust shape variability, 

we use q n eigenvectors to represent each 

shape. In addition, to consider pose differences, 

we add 7 pose parameters (for local alignment of 

the structures) to the shape parameters of each 

structure. Our experiments show that using a 

single global transformation is not realistic and 

different shape models need independent local 

alignments. Finally, for each structure, we may 

write: 
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where w is the vector of eigenvectors multipliers 

and p
k
 is the vector containing 7 transformation 

parameters for the alignment of the kth structure 

according to the following equations. 
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where T, R, and S are the translation, rotation, and 

scaling matrices, respectively, t  is the vector of 

translation parameters, and c  is the center of 

rotation used for scaling and rotation. This center 

of rotation improves the local alignment accuracy, 

is fixed, and is computed using the mean of the 

centers of masses of the structures in the training 

datasets. In this manner, each structure's pose may 

change while shape classes co-variations are used 

for coupling.  

In the next section, we present our proposed 

entropy-based segmentation method using the 

shape model described above. 

  

3.     Segmentation of Structures 
After construction of the shape model and shape 

classes’ co-variations, an energy function is 

defined for the segmentation process. In this 

section, we explain our energy model and 

optimization method. 

 

3.1 Energy Model 
The proposed entropy-based method classifies 

image voxels to distinguish regions by 

minimizing a weighted sum of the conditional 

differential entropies of different structures. To 

segment m coupled structures with closed 

boundaries, there are m regions for these 

structures. We set the area outside of the m 

structures as 1m   and use this notation 

throughout the paper. Based on the entropy of 

these regions , 1 1k k m   , the energy 

function is defined as  
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      where |Ω| 

represents the cardinality of a set Ω (number of 

pixels). When all of the regions are as uniform as 

possible, the energy function is at its minimum. 



Nevertheless, there is the important problem of 

estimating conditional differential entropies. 

We estimate the entropy of the kth 

structure using     1ˆ ˆln ,
k

k k

k

H p I d



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  x x . In 

addition, we use 
k

k
P





 based on several 

previous publications ‎[14]. In entropy estimation, 

  ˆ , kp I x is the approximate probability 

density function (pdf) in region k of the 3D 

image I. Many researchers estimated pdf's off-

line. However, we observed dissimilar dynamic 

ranges of image intensities in different datasets 

and concluded that an off-line pdf is suboptimal; 

we use on-line estimation.  

We estimate pdf's using the Parzen window 

method ‎[15], one of the most powerful and robust 

methods in the literature, with the Gaussian kernel 

as        1
ˆ ˆ ˆ,p I K I I d


  

 
x x x x . In this 

equation, K is the Gaussian kernel with a 

standard deviation (sigma) as its tuning parameter, 

which sets the resolution of the pdf estimation 

process. Choosing low values make pdf 

estimation sensitive to noise and high values 

remove useful details from the estimated pdf. In 

the literature, values between 1and 3 are used. 

Finally, we write the energy function as:  

 

where P  is vector of 7m q  parameters 

(because each one of the local alignments have 7 

parameters). 

 

3.2 Energy Optimization 

There are many ways to minimize the energy 

function. To minimize the energy function, we use 

Quasi-Newton algorithm with BFGS method for 

Hessian matrix estimation. Although, methods 

such as steepest descent are also popular in the 

literature ‎[11], we obtained superior results using 

the Quasi-Newton algorithm. The gradients can be 

estimated using numerical methods but analytical 

computation is more robust and generates more 

accurate results. To compute the gradients 

analytically, we use Heaviside function 
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follows: 

      

 
    

 
    

1

1

1

1 1

ˆ ˆln ln

1 1
ˆ ˆ ˆ

ˆ

1 1
ˆ ˆ ˆ

ˆ

j

j j

m j

m

j

i i j m

j

j

i

jj

j

i

m m

w J w p p d

w K I d d
p

w K I d d
p






 

 
 

    

   


   


 
  
 

  
  

  

 

 

 

x x x x

x x x x x
x

x x x x x
x

 (5) 

 

      

 
    

 
    

1

1

11

ˆ ˆln ln

1 1
ˆ ˆ ˆ

ˆ

1 1
ˆ ˆ ˆ

ˆ

j

k k

m k

k k k
mi i k

k k
i

kk

k k
i

mm

p J p p p d

p K I d d
p

p K I d d
p




 

 


 
 
 
 

 
 
 
 

    

   


   




 

 

x x x x

x x x x x
x

x x x x x
x

 
(6) 

In the above equations, for simplicity, we have 
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where  k

k
i

M

p





p
 is computed using derivatives of 

each matrix element. Initial parameters are chosen 

for identity transformation of the mean shape. 

 

4. Experimental Results 
In this section, we show the results of applying 

the proposed method to real MRI data. This data 

is obtained from the Internet Brain Segmentation 

Repository (IBSR) and used for training and 

testing of the proposed method ‎[16]. Datasets are 

T1-wighted volumetric images with different 

pixel sizes. There are 18 datasets for which expert 

physicians have segmented 43 structures. These 

datasets have non-cubical voxels. Each dataset 

consists of 256 256 128   voxels. The smallest 

volume that covers each of datasets is 
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 
3

256 256 192 mm  . Based on the structures 

of interest, a region of interest (ROI) is chosen to 

improve speed and robustness of the algorithm.  

This improves the execution speed and accuracy 

of the method since the pdf’s of all regions inside 

and outside of each desired structure are needed. 

We estimate these pdf’s using the Parzen window. 

We define the ROI as 1.05 times of the smallest 

cube that covers all of the desired structures in 

different training datasets. This additional 5% 

confidence interval has been sufficient for the test 

datasets (image segmentation) in our experiments. 

In this step, the initial parameters and shape 

models are set to start the segmentation process. 

After extraction of the ROI, we use binary images 

of the structure ( k ) in the training dataset ( i ) to 

construct distance maps ( k
i ). We set W = 0  and 

 kM Ip as the initial parameters. Because of 

different scales of the parameters, a normalization 

step is needed. For example, we compute rotation 

in radian and translation in pixel. Therefore, we 

have to choose a smaller unit for rotation to have 

a uniform parameter space.  

To evaluate the results, we use the Dice 

coefficient ‎[17]. In addition, as an alternative 

evaluation measure, we use the segment 

Hausdorff distance ‎[18]. For optimization and 

extraction of the principal shapes, we use 

MATLAB ‎[19]. All programs are run on a 3.2 

GHz (Dual Core) Windows XP workstation with 

2 GB RAM. 

Among different structures in the brain, 

we work with 12 (6 structures on the left and right 

sides of the brain): 1) caudate; 2) thalamus; 3) 

putamen; 4) pallidum; 5) hippocampus, and 6) 

amygdale. We use ten datasets (randomly chosen) 

for training and the remaining eight datasets to 

test the proposed segmentation algorithm. We 

segment each of the left and right structures 

individually using principal shapes extracted from 

the training datasets. We also segment the left and 

right structures or multiple structures by the 

proposed coupling method. Evaluation of the 

results using dice coefficient and segment 

Hausdorff distance for the amygdala and 

hippocampus for eight test datasets (different 

from the training datasets) are shown in Tables 1-

2. Note that coupling of the left and the right 

structures generates superior segmentation results 

and are more accurate compared with the  

segmentation results obtained in the alone manner 

(i.e., without the coupling information) using 

either the Dice coefficient or the segment 

Hausdorff distance. In addition, note that the 

coupling of the amygdala with other structures 

generates superior results in all cases using both 

of the Dice coefficient and segment Hausdorff 

distance measures. For the hippocampus, adding 

other structures does not improve the 

segmentation quality compared to the 

segmentation results when using the left and the 

right hippocampuses in the coupled manner based 

on the Dice coefficient. On the other hand, 

coupling with pallidums, caudates, and 

thalamuses improves segmentation quality based 

on the segment Hausdorff distance criteria. In Fig. 

1, sample segmentation results for the amygdala 

and hippocampus are shown, when segmentation 

process is done for the coupling of these 4 

strcutres (left and right amygdala and 

hippocampus).    

 
Table 1. Dice coefficients and Segment Hausdorff distances for 

the amygdala from 8 test datasets without and with the coupling 

information. 

Coupled With 
Dice Coefficient 

Segment Hausdorff 

distance 

L R LR L R LR 

None 0.55 0.59 0.57 5.91 6.17 6.04 

Itself  0.57 0.59 0.58 5.83 6.17 6.00 

2 Hippocampi 0.61 0.64 0.62 5.55 6.01 5.78 

2 Pallidums 0.57 0.62 0.59 5.64 5.84 5.74 

2 Putamens 0.61 0.66 0.64 5.54 5.92 5.73 

2 Caudates 0.59 0.67 0.63 5.45 5.50 5.47 

2 Thalamuses 0.59 0.66 0.63 5.63 5.57 5.60 

 
Table 2. Dice coefficients and segment Hausdorff distances for the 

hippocampus from 8 test datasets without and with the coupling 

information. 

Coupled 

 With 

Dice Coefficient 
Segment Hausdorff 

distance 

L R LR L R LR 

None 0.68 0.63 0.66 6.3 7.15 6.73 

Itself  0.71 0.68 0.70 6.48 6.73 6.61 

2 Amygdalas 0.69 0.64 0.67 6.08 7.18 6.63 

2 Pallidums 0.7 0.68 0.69 6.14 6.45 6.30 

2 Putamens 0.69 0.64 0.67 6.62 7.51 7.07 

2 Caudates 0.68 0.69 0.69 6.55 6.42 6.49 

2 Thalamuses 0.7 0.67 0.69 6.16 5.17 5.67 

 

5.  Conclusions 
We presented a new method for the segmentation 

of brain structures using their shapes relation 

extracted using PCA. We used separate shape 

class registration to extract each class variation 

with respect to the other shape classes. To do this, 

we removed variations due to shape poses by 

considering each shape representation locally. In 

addition, we added an independent transformation 

to each shape to allow more flexibility. This 

transform has seven parameters that cover 

rotation, scaling, and translation. Energy function 



used for segmentation takes into account entropy 

of different shapes. With an automatic 

initialization of the structures and use of the 

quasi-Newton algorithm, a local minimum of the 

energy function is found. To achieve accurate 

results, probability density functions are 

calculated iteratively and gradients are computed 

analytically. Our method has low sensitivity to the 

parameters and is robust. Experimental results 

illustrate robustness and quality of the results 

generated by the proposed framework. 

 

 

 

 
(a) 

 
(b) 

Fig. 1. Final left and right hippocampi (green) and 

amygdalas (blue) compared with the manual 

segmentation results (low opacity) extracted from the 

test datasets from anterior (a) and posterior (b) views. 
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