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ABSTRACT 

 
The purpose of this study is to segment hippocampus, 

amygdala and entorhinal cortex in magnetic resonance 

images (MRI) of temporal lobe epilepsy (TLE) patients. The 

proposed method consists of two separate parts. First, we 

use an atlas-based segmentation method to obtain initial 

segmentation results for desired structures. Using additional 

preprocessing steps for image registration and gray matter 

(GM) segmentation is the specification of this stage of the 

work. Then, all of the GM voxels are labeled using an 

anatomical atlas. In the next stage, variational level set 

formulation without re-initialization is applied on the 

images. We use the boundaries obtained by atlas-based 

segmentation as the contour for initialization of level set 

function. Automatic generation of initial contour makes the 

final segmentation results operator-independent. The 

proposed approaches are evaluated by comparing automatic 

and expert’s segmentation results and confirming their 

similarity.  

 

Index Terms— Image segmentation, level set method, 

atlas-based segmentation, magnetic resonance images, curve 

initialization 

 

1. INTRODUCTION 

2.  

The structures that appear in magnetic resonance images 

(MRI) are often segmented for a variety of clinical and 

research applications. Many neurodegenerative diseases 

show changes in volume and shape of brain structures. In 

this application, segmentation of specific brain structures has 

clinical values in diagnosis stage, decision about surgeries 

and treatment evaluations [1],[2]. Manual delineation of 

brain structures suffer from difficulties of defining 

anatomical landmarks and boundaries, as well as obtaining 

results with low reproducibility and objectivity.  

In this study, we focus on automatic segmentation of brain 

structures from MR images of temporal lobe epilepsy (TLE) 

patients. Among all of the brain structures, those in the 

temporal lobe of the brain are most affected by TLE. We 

develop automatic methods for the segmentation of the 

hippocampus, amygdala, and entorhinal cortex which are 

among the most challenging structures in the brain to 

segment.  

First, preprocessing stages are applied to the image data. 

These steps include spatial normalization, gray matter (GM) 

segmentation, exclusion of non-brain voxels, and 

compensation of spatial normalization effects. Then, all of 

the gray matter voxels are labeled using an anatomical atlas 

to create individual regions for each of the brain structures. 

By making the maximum probability atlas, corresponding 

voxels of the desired structures are obtained. In the next 

stage, we use the level set framework proposed in [3] to 

obtain more precise segmentation results.  

Novel contributions of this work are two-fold. First, we 

use a specific atlas-based segmentation procedure for 

generating the initial contour for the level set method. 

Secondly, we segment the entorhinal cortex automatically. 

To our knowledge, none of the previous studies segmented 

this structure automatically. 

The rest of the paper is organized as follows. In Section 

2, the specification of data and image acquisition protocol 

are described. Also, our proposed method for generating the 

initial contour and segmentation of the structures are 

presented. Section 3 presents the segmentation results and 

evidences for their accuracy. Finally, Section 4 concludes 

the paper. 

 

2. MATERIALS AND METHODS 

 

2.1. Image Acquisition and Subjects 

 

Magnetic resonance images were acquired using a General 

Electric 3 Tesla Signa system (GE Medical System, 
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Milwaukee, WI). All patients underwent coronal T1-

weighted MRI study using a spoiled gradient-echo (SPGR) 

sequence with msTETITR 500/7.1/6.7//  , flip angle = 

20 , field of view (FOV) = 2200200 mm , matrix size = 

256256 , pixel size = 2781.0781.0 mm , and slice 

thickness = mm0.2 . Six subjects were included in this study 

(4 female, 2 male). They are adults with an age average and 

standard deviation of 41 and 11 years, respectively. 

 

2.2. Preprocessing 

 

In this section, we describe the preprocessing stages applied 

before the actual segmentation of the brain structures. These 

are performed using SPM5 (Wellcome Department of 

Imaging Neuroscience, London, UK; www.fil.ion.ucl.ac.uk). 

      1) Intensity non-uniformity correction. The images are 

corrected for the bias effects. The MR images are usually 

affected by smooth artifacts that are not problems for visual 

inspection, but can make problems for automated 

procedures. 

2) Spatial normalization. Image registration to an atlas is 

a common framework with the introduction of statistical 

methods for image processing, such as statistical parametric 

mapping (SPM) [4]. We use a well-known probabilistic atlas 

from the Montreal Neurological Institute (MNI). We register 

all of the structural images to the MNI template using 12 

parameter affine transformation and obtain transformation 

matrix which is needed for atlas-based segmentation. 

3) Gray mater segmentation. Since hippocampus, 

amygdale, and entorhinal cortex are all gray matter (GM) 

structures, normalized images are segmented to gray matter 

partitions. This segmentation is performed by the probability 

maps, used as Bayesian priors.  

4) Exclusion of nonbrain voxels. According to the 

method proposed in [5], all of the GM images are eroded to 

remove nonbrain voxels from the skull, scalp, and venous 

sinuses. The erosion is followed by conditional dilation. The 

obtained images are extracted gray matter partitions in the 

stereotactic space. 

5) Modulation. Spatial normalization may cause some 

specific regions of the brain to grow and other regions to 

shrink. For instance, if a subject’s structures have very 

different from the template, then the volumes change 

dramatically during the normalization step. This effect can 

be compensated by multiplying voxel values of spatially 

normalized gray matter images by relative volume of gray 

matter before and after normalization. The changes of 

regions in the normalized image in relation to the original 

image make a deformation field. The gradient of this 

deformation field is its Jaccobian matrix and consists of the 

following matrix in the 3D space: 































zd

dz

yd

dz

xd

dz

zd

dy

yd

dy

xd

dy

zd

dx

yd

dx

xd

dx

             (1) 

where  zyx   and  zyx     are the coordinate vectors in the 

original and normalized images, respectively. We can use 

the determinant of the Jaccobian matrix as a measure of 

relative volumes of the GM before and after normalization. 

 

2.3. Atlas-Based Segmentation 

 

To obtain a rough segmentation of brain structures, each 

individual gray mater voxel is labeled based on the MNI 

atlas and the transformation matrix gained in preprocessing 

step. Then, by computing the voxel by voxel average of the 

same structure label from a group of subjects, statistical 

probability anatomy maps are created. Finally, the label of 

the most probable structure is stored at each voxel of the 

maximum probability atlas. We extract the corresponding 

voxels of the hippocampus, amygdala, and entorhinal cortex 

and obtain an initial three dimensional segmentation of these 

structures. In next section, the method that we use to obtain 

precise segmentation results is described. 

 

2.4. Level Set Segmentation 

 

Level set methods can be formulated as the zero level set 

}0),,(),{( tyxyx  of a time dependent function ),,( tyx  

that evolves according to the following equation [6]: 
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where F  is the speed function, which depends on the image 

data and the level set function  .  In the traditional level set 

methods [7], the level set function can develop steep or flat 

shapes during its evolution, which makes further 

computation inaccurate. To avoid this problem, the function 

  is initialized as a signed distance function. Then, it is re-

initialized during the evolution by solving the following 

equation [8]: 
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where 0 is the function that is re-initialized and )(sign is 

the sign function. If 0 is not smooth, the zero level set of 

the function   is moved incorrectly away from that of the 

original function [3],[9]. Note that in these methods, the 

level set function should not be far from a signed distance 

function. 
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To avoid these problems, we use a variational level 

set formulation without re-initialization proposed in [3]. 

Also, we use our atlas-based segmentation results as the 

contour for initialization of function   before the evolution. 

For image I , the edge indicator function is defined by: 
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where G  is the Gaussian kernel with standard deviation 

 . The external energy that moves the zero level set 

function towards the desired image features like boundaries 

is defined as: 

)()()(,,   ggg                    (5) 

where  and   are constants, and )(g  and )( g  are 

defined by following equations: 
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where   is the Dirac function, H is the Heaviside function, 

and 2  is the image space. The internal energy is 

another term in the energy function of dynamic curves that 

prevents function   to be far away from a signed distance 

function. The proposed method in [3] considers the 

following internal energy. 
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Finally, the total energy function is defined as: 

)()()( ,,  g                         (9) 

By minimizing the above equation, the zero level set 

function   is evolved to converge to the object boundaries. 

 

3. RESULTS 

 

We have applied the proposed method to the coronal MR 

images to segment the hippocampus, amygdala, and 

entorhinal cortex. Figures 1-3 show the segmentation results. 

The atlas-based segmentation results, final level set 

segmentation results, and manually segmented images are 

shown. We use manually segmented images by an expert to 

evaluate the automatic segmentation results. 

To obtain a quantitative measure, we have calculated the 

Dice’s coefficient as a similarity measure:  
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where X  and Y are the sets that we want to measure their 

similarity. For measuring the similarity between automatic 

segmentation and expert’s segmentation, we used the 

following measure: 
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where automaticn  is the number of pixels in the structure 

segmented automatically, manualn  is the number of pixels in 

the structure segmented manually, and overlapn  is the 

number of pixels that belong to both of them. We have 

measured this coefficient for each of the three structures. For 

evaluation of the results, the brain slices that include these 

structures have been selected from MRI studies of each of 

the six subjects. Table 1 presents the mean and standard 

deviation of the similarity measures between the automatic 

and expert’s segmentations for the six subjects. Also, we 

have calculated the similarity measures between the manual 

segmentation and the segmentation results obtained by the 

method of [3]. These results are also shown in Table 1 and 

reflect the superiority of our proposed method. 

 
Table 1. Mean and standard deviation of similarity measures for 

the left and right hippocampus, amygdala, and entorhinal cortex, as 

segmented by the automatic method and the expert for brain slices 

that include these structures, acquired from 6 subjects. 

 stdAveage   

Atlas-Based 

Initialization  

stdAveage   

Manual 

Initialization 

Right Hippocampus 0.91  0.04 0.87  0.05 

Left Hippocampus 0.92  0.03 0.89  0.04 

Right Amygdala 0.87  0.06 0.84  0.05 

Left Amygdala 0.89  0.06 0.88  0.06 

Right entorhinal cortex 0.82  0.05 0.75  0.04 

Left entorhinal cortex 0.80  0.06 0.73  0.07 

Overall 0.87  0.05 0.83  0.05 

 

 

4. CONCLUSION 

 

In this work, we have integrated the atlas-based 

segmentation method and the level set framework to obtain 

accurate segmentation of the three temporal lobe structures 

critical to TLE.  Accurate segmentation is the first and most 

important step in quantitative evaluation of the brain 

structures. When segmenting an anatomical structure, having 

priori information about the shape of the structure and its 

boundaries can significantly improve the final segmentation 

results. Priori information about the structures was obtained 

by registering the images to an atlas and labeling the voxels 

accordingly.  The proposed method has successfully 

segmented the entorhinal cortex which is a very small and 

difficult-to-segment structure in the coronal view of the 

brain. 

 



 
Figure 1. Automatic and expert’s hippocampus segmentation 

results for three different slices on the coronal view. Left: Atlas-

based segmentation, Middle: Final level set segmentation, Right: 

Expert’s segmentation. Each row shows a different slice. 

 

 
Figure 2. Automatic and expert’s amygdala segmentation results 

for two different slices on the coronal view. Left: Atlas-based 

segmentation, Middle: Final level set segmentation, Right: 

Expert’s segmentation. Each row shows a different slice. 

 

 
Figure 3. Automatic and expert’s Entorhinal cortex segmentation 

results for two different slices on the coronal view. Left: Atlas-

based segmentation, Middle: Final level set segmentation, Right: 

Expert’s segmentation. Each row shows a different slice. 
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