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ABSTRACT 

This paper optimizes two linear models implemented 

using finite element method for estimating brain 

deformation during craniotomy. These are mechanical 

models called solid-mechanic and elastic. Both models 

assume finite deformation of the brain after opening the 

skull. We use MRIs of different patients undergoing brain 

tumor surgery in two states of pre-operative and intra-

operative. Anatomical landmarks in both images are 

specified by an expert radiologist. Tetrahedral mesh and 

function optimization are used to find the optimal modes 

by minimizing the mean distance between the actual and 

predicted locations of the anatomical landmarks. Based 

on the final value of the objective function, we conclude 

that the accuracy of the solid mechanic model is higher 

than that of the elastic model.  This method estimates 

brain deformation using anatomical landmarks specified 

by an expert on pre-operative MRI without requiring 

intra-operative images. 

1. INTRODUCTION 

Mechanical property of very soft tissue such as brain, has 

been studied in recent years for applications like surgical 

planning [1]. However, in a common neurosurgical 

procedure, the brain deforms after opening the skull, 

causing misalignment of the subject to the preoperative 

images [2], [3]. This happens because of cerebrospinal 

fluid (CSF) leakage, dura opening, anaesthetics and 

osmotic agents, as well as conditions, which are different 

from the normal state [4], [5]. While the intraoperative 

imaging such as iMRI is the best way to determine this 

deformation, intraoperative images suffer from the 

constraints of the operating room [6]. This problem can 

be avoided by using biomedical models. 

 In this paper, two models are used as described next. 

The first model is based on the biphasic soft-tissue [7] 

that assumes the brain tissue behaves as a linear elastic 

material and indicates that the stress can be related to 

strain by Hook’s law [8], [9]. The second model is based 

on the principle that the sum of the virtual work from the 

internal strains is equal to the work from the external 

loads [10], [11]. In most practical cases, such models 

utilize the finite element methods [12] to solve sets of 

partial differential equations governing the deformation 

behavior of the tissue. For solving these models, we must 

know the value of the brain's parameters. Previous works 

used approximate values of the brain parameters, which 

we also use in this work as initial values. We apply 

function optimization to optimize these parameters and 

minimize the distance between the predicted locations of 

the anatomical landmarks using the pre-operative images 

and their actual locations on the intra-operative images. 

We then compare the two models using their resulting 

errors.  

In the next section, we explain two models and our 

method for solving these models using finite element 

methods and optimizing their parameters. In Section 3, 

we explain the results of our implementation on five cases 

of the brain and compare the models. Section 4 presents 

the conclusions of our work. 

2. MATERIALS AND METHODS  

Patient-specific geometric data are obtained from a set 

of five pre-operative and intra-operative MRI of patients 

undergoing brain tumor surgery. In order to specify the 

displacements of the brain tissue, anatomical landmarks 

are defined in both of the pre- and intra-operative images 
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that are registered rigidly using the ITK software. The 

displacement of the landmarks can be defined by medical 

experts, imaging device such as MRI, CT, laser devices, 

or spectroscopic camera. As mentioned previously, the 

resolution of the intra-operative tomography images is 

low and thus it may be superior to image the exposed 

surface of the brain or tissues that are important for 

surgery like the tumor.  

In order to distinguish between the brain parenchyma 

and tumor, the images are segmented using the 3D-Slicer. 

After the segmentation, three-dimensional models of the 

surfaces of the brain parenchyma and tumor are created 

using the COMSOL3.3. For creating the 3D model, the 

slices that are near the craniotomy surfaces, have higher 

resolutions than the slices far from the surface. After 

creating the 3D models, automatic 4-noded tetrahedral 

meshes with Lagrange shape functions are generated for 

both of the parenchyma and the tumor using the 

COMSOL3.3 software. An example of the mesh 

generated by the software is shown in Figure 1, which 

consists of 15,164 tetrahedral elements. 

2.1. Biomedical Models 

As mentioned in Section 1, for determining the 

deformation of the brain, a model of the brain may be 

used. Such a model provides numerical formulations that 

describe the behavior of the brain tissue. These 

formulations can be linear or non-linear [13], [14]. In this 

paper, we use and compare two models that describe the 

tissue behavior linearly.  

In the first model (linear solid-mechanic model), the 

body is assumed to be a linear elastic continuum with no 

initial stresses or strains. The energy of the body's 

deformation caused by externally applied forces can be 

expressed as equation (1) [10]. 
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(1) 

Where   is the stress vector and in the case of linear 

elasticity, with no initial stresses or strains, relates to the 

strain vector ( ) by the linear equation  D . The 

description of the parameters can be found in [10]. The 

value of D depends on two material parameters: the 

Young modules and the Poisson ratios. According to 

[10]-[11], the solution to these equations can be written in 

a global linear equation (2). 

FKu   (2) 

We rely on the study of Ferrant et al in [10] and choose 

our initial coefficients (Young modules = 3 kPa, Poisson 

ratio = 0.45).  

The second model (linear elastic model), assumes that 

the deformation of the brain tissue as a poroelastic 

material occurs because of its elastic behavior and the 

pressure of exteracellular fluid. Based on these 

assumptions, the model can be written as equation (3) 

[15], [16]. 
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 (3) 

The description of parameters can be found in [4]. The 

initial value of parameters can be seen in Table I. 

Generally, the brain can be supposed as a saturated 

material thus omitting the derivation of the pressure with 

respect to time in equation (3) (i.e., 0/1,1  S ). This 

model allows accessing more elastic boundary conditions 

of the intracranial pressure by modeling CSF drainage 

while maintaining linearity. That is an important 

computational advantage. 

2.2. Boundary Conditions 

For solving we need boundary conditions to solve the 

equations. In both models, we assume the exposed surface 

is free to move and the remaining surface is fixed. For the 

first model, we have conditions for the displacement 

variable and force per unit (F). We use F=u for the 

boundary conditions of the fixed boundary nodes because 

the elements of the rigidity matrix K in equation (2) for 

which the deformation is supposed to be known need to 

be set to zero and the diagonal elements to one. More 

details can be found in [10]. For the exposed surface, we 

assume its nodes are free to change. The initial value of 

the parameter F is set by examining the MR images of 

five different patients. The exact value of F for each part 

is determined by the optimization process. For the second 

model, the boundary condition for pressure (p) instead of 

 
Figure 1. The result of meshing a brain volume. 

 

 

Table I. Parameter used in equation (3) 

Parame

ter 

symbol 

Value 

E 2100 Pa 

  0.46 

t
 1000 kg/m3 

f  1000 kg/m3 

K 1e-7m3s/kg 

  1 

1/S 0 

  0.001 Pa/s 

G E/2( +1) Pa 

 

 



the displacement variable is needed. The corresponding 

nodes in the mesh lying above the level of intra-operative 

CSF drainage are assumed to reside at the atmospheric 

pressure (Dirichlet condition in pressure), while those that 

do not, are the non-draining regions of the brain 

(Neumann condition in pressure).  

2.3. Optimization Process 

The parameters of the brain in each model are not the 

same for different patients and thus usually approximated 

parameters are used. In this paper, we use an optimization 

process to optimize these parameters and achieve most 

accurate results with respect to the real deformations. To 

this end, we choose a cost function defined as the sum of 

the distances between the actual positions of the 

anatomical landmarks in the intra-operative images and 

their estimated positions based on the deformations of the 

pre-operative images by the two models. We use the 

Maltlab optimization toolbox to optimize the cost 

function and find the optimal values of the parameters as 

explained next.       

In the first model, we do not know the exact value of 

the force applied to the center of the exposed surface of 

the brain. This parameter is found by the optimization 

process. In addition, the two parameters (Young modulus 

and Poisson’s ratio) reported in the literature are not the 

same for different patients and thus they will be also 

optimized.  

For the second model, the parameters in Table I 

except for S/1,  are optimized. This is because, as 

mentioned in Section 2.1, we model the brain as a 

saturated material for which the derivative of the pressure 

with respect to time is omitted in equation (3) 

(i.e., 0/1,1  S ). We determine the brain's 

deformation in the steady state, meaning that we do not 

consider the transient changing of p in equation (3) and 

thus k/  is optimized.   

3. RESULTS  

For estimating the deformation of the brain, we use a set 

of five pre-operative MRIs of different patients 

undergoing brain tumor surgery. These data were taken in 

two states of pre-operative and intra-operative. The intra 

and pre-operative images are registered rigidly, and then 

special points are determined by expert physiologist in 

both pre- and intra-operative images. In this paper, 

approximately 60 points are selected by physiologist in 

each data. The half points are used in optimization 

process and the other half are used to test the method. As 

mentioned before, the brain and the tumor are segmented 

using 3D SLICER and 3D model of brain and tumor are 

created using COMSOL3.3. For meshing and solving 

process we use COMSOL3.3 and for optimization 

process, we use MATLAB optimization toolbox. The 

results of both models can be found in Figures 2-3. As it 

can be seen in both model the estimated tumor in 2D and 

3D have a good matching with real intra-operative tumor 

and the accuracy of both model for tumor are acceptable 

but the accuracy of fist model is better. This can be seen 

in larger scale better. The tolerance of parameters can be 

seen in Table II and the mean and maximum of 

displacement error can be seen in Table III. As can be 

seen from Table III, For special points which are 

specified by physiologist that are mostly near the exposed 

surface, the accuracy of both models are acceptable but 

first model is better. This method can be used for 

estimation the deformation of the exposed brain without 

using intra-operative images. 

4. CONCLUSION 

In estimating the brain deformations, model selection is 

an important step for obtaining accurate and reliable 

results. To this end, we studied two linear mechanical 

models for describing the mechanical properties of the 

brain based on finite deformation and optimization of 

their parameters for a simple sphere and real models of 

the brain extracted from MRI. The first model is based on 

the virtual works, applied to the inside and outside of the 

brain, but the second model is based on the equations that 

relate the displacement of the volume to the pressure of 

the fluid. Results of our method in both modeling and 

matching the estimated and intra-operative tumor in two 

and three dimensions are good but the points near 

exposed surfaces have a better matching in the first 

model. These results confirm that we can estimate the 

deformation of the brain without using the intra-operative 

images. 
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TABLE II- Initial and estimated parameters for the first 

and second model. 

 
Optimized in five 

cases 
Model 

Young modulus 0.45 ± 0.029657 1st model 

Poisson’s ratio 3000 ± 269.399 1st model 

Resultant Force 222.4 ± 54.95614 1st model 

E 2100± 204.9833 2nd model 

  0.45 ± 0.021409 2nd model 

t
 1000 ± 40.5628 2nd model 

f  
1000 ± 12.8952 2nd model 

 /k 1.01e4 ± 032.1643 2nd model 

 

TABLE III-Maximum and mean error of displacement 

between estimated point and real point 

Maximum error for 

1st model 
mmz

mmy

mmx

2465.05955.0

8.06.3

65.035.3






 

Maximum error for 

2nd model 
mmz

mmy

mmx

3005.07445.0

785.0615.3

42.042.3






 

Mean error for 1st 

model 
mmz

mmy

mmx

215.0348.0

425.0275.1

385.0255.1






 

Mean error for 2nd 

model 
mmz

mmy

mmx

22.0414.0

455.0345.1

24.031.1






 

 

a) b)  

 

c)   

  

Figure 2. Result of the second model, a) 3D result of brain 

deformation, b) 3D comparison of tumor  deformation c) 

2D result for tumor  

a) b)  

 

c)    

 

Figure 3. Result of the second model, a) 3D result of brain 

deformation, b) 3D comparison of tumor  deformation c) 2D 

result for tumor  


