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Abstract 

This paper presents finite element computation for brain deformation during craniotomy. The results are used 

to illustrate the comparison between two mechanical models: linear solid-mechanic model, and non linear finite 

element model. To this end, we use a test sphere as a model of the brain, tetrahedral finite element mesh, two 

models that describe the material property of the brain tissue, and function optimization that optimizes the 

model's parameters by minimizing distance between results deformation and  supposed deformation. Both 

models assume finite deformation of the brain after opening the skull. We compare accuracy of the two models 

using error of the optimization process.  
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1. Introduction 

Mechanical property of very soft tissue such as brain, 

liver, and kidney has been studied in recent years. This is 

because of applications such as surgical robot control 

system [1], surgical operation planning, and surgeon 

training systems based on the virtual reality techniques. 

However, in a common neurosurgical procedure of the 

brain, it deforms after opening the skull, causing 

misalignment of the subject to the preoperative images 

such as magnetic resonance image (MRI) or computed 

tomography (CT) images [2], [3]. This phenomenon 

happens because of cerebrospinal fluid (CSF) leakage, 

dura opening, anaesthetics and osmotic agents, as well as 

conditions which are different from the normal state. 

Opening the scalp and CSF leakage cause the 

gravitational shift of the tissue due to disappearance of 

tension and pressure forces on the boundary condition of 

the brain [4], [5]. While the intraoperative imaging is the 

best way to determine this deformation, intraoperative 

images suffer from the constraints of the operating room. 

Thus, spatial resolution and contrast of intra operative 

images are typically inferior to those of preoperative ones 

[6]. This problem can be solved by using biomedical 

models. 

 To this end, two models have been proposed in recent 

years, as described next. In 1999 K. Miller [7] suggested 

a model based on equation of equilibrium that related the 

covariant differentiation of stress with respect to the 

deformed configuration to body force per unit mass. In 

this model brain deformation is supposed to be large, 

brain tissue is treated as a hyper viscoelastic material and 

the stress–strain behavior of the brain tissue is non-linear 

[8], [9].  In 2002, M. Ferrant [10] proposed a mechanical 

model based on this principle that the sum of the virtual 

work from the internal strains is equal to the work from 

the external loads. In this formulation, brain deformation 

is supposed to be infinitesimal, brain tissue is treated as 

an elastic material, and the relation between strain and 

stress is linear [11].  

 In most practical cases, such models utilize the finite 

element methods [12] to solve sets of partial differential 

equations governing the deformation behavior of the 

tissue. Using these methods, one can define the brain 

deformation but the brain's parameters are unknown. 

Previous works used the approximate value of the brain 

parameters, which we also use in this work. We apply 

function optimization to optimize these parameters and 

minimize the distance between the resulting deformation 

and the supposed deformation. 
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In this paper we use the above two models of the 

brain and optimize their parameters to match their 

resulting deformation with the assumed deformation. We 

then compare the two models using their resulting errors. 

In the next section, we explain the models and describe 

how to use meshing and boundary conditions for solving 

the problem using finite element methods and how to use 

function optimization to optimize their parameters. In 

Section 3 we explain the results of our implementation on 

a sphere as a model of the brain and compare the 

methods. Section 4 presents the conclusions of our work.  

2. Materials  and methods 

2.1. Construction of Finite Element Mesh 

Within Finite Element Modeling (FEM) framework, the 

body on which one is working needs to be discretized 

using finite element mesh. By partitioning the object into 

small elements, the equations will be solved for every 

element. Therefore, it will be solved for the whole object. 

To this end, we used a sphere with a diameter of 22 Cm 

which is approximately the size of the brain. We also use 

FEMLAB3.3 to generate 4-noded tetrahedral mesh with 

Lagrange shape function (Figure 1). This software 

generates automatic mesh and also by changing its 

parameters the user can change the mesh size.  

2.2. The Computational Biomedical Models 

As mentioned before, for determining the deformation of 

the brain, a model for the brain may be used. Such a 

model gives some numerical formulations that can 

describe the behavior of the brain tissue. These 

formulations can be linear and non-linear. The linear 

model is simpler to implement [13], [14] and needs less 

time but a nonlinear model is more complicated. In this 

section we illustrate two models: one model describes the 

tissue behavior linearly and the other assumes the brain 

tissue to be nonlinear.  

2.2.1. Linear Solid-Mechanic Model 

In this model, the body is assumed to be a linear elastic 

continuum with no initial stresses or strains. The energy 

of the body's deformation caused by externally applied 

forces can be expressed as [10]: 
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(1) 

Where F = F(x,y,z) is the total force applied to the elastic 

body,  is the elastic body, u is the displacement vector, 

and   is the strain vector that can be defined as:  
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(2) 

Also,   is the stress vector and in the case of linear 

elasticity, with no initial stresses or strains, relates to the 

strain vector by the linear equation  D  where D is 

the elasticity matrix describing the material properties 

[12]. The value of D depends on two material parameters: 

the Young modules and the Poisson ratios. Volumetric 

deformation of the brain is founded by solving equation 

(1) for the displacement vector u, which minimizes the 

energy function E. Numerical solution to this equation 

could be written in a global linear equation: 

FKu   (3) 

The solution of equation (3) provides us the deformation 

field that is results from the forces applied to the body. 

We rely on the study of Ferrant et al in [10] and choose 

our initial coefficients (Young modules = 3 kPa, Poisson 

ratio = 0.45). 

2.2.2. Non-Linear Formulation Model 

model the brain is supposed to be a single-phase 

continuum undergoing large deformations. In this 

analysis, the stresses and strains are measured with 

respect to the current configuration. Therefore, using 

Almansi strain and Cauchy stress, the virtual work 

principle can be written in the following way [15]:  
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Where 
V

ijij dV  is the internal virtual work of strain, 


V

i

B

i dVuf  is the virtual work of external force that apply 

to whole body, and 
S

i

S

i dSuf   is the virtual work of 

external force that apply to the surface. As the brain 

undergoes finite deformation, current volume V and 

surface S, in the integration of equation (4) is unknown. 

Therefore, this equation needs to use another equation 

that describes the mechanical property of the material i.e. 

appropriate constitutive models. Equation (4) forms a so-

called weak formulation of the problem. 

An alternative, so-called strong formulation is given by 

differential equation: [16] 
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(2) 

Where  denotes Cauchy stress,  is a mass density, F is 

a body force unit mass. Einstein summation convention 

was used. Differential equation (5) must be supplemented 

 
 

Figure 1. The result of meshing the volume 

 



by formulae describe the mechanical property of the 

materials, relating the stress to the deformation of the 

body. 

There exists a variety of methods to solve integral 

equations (4) and strong formulation (5). Boundary 

Element Method used the weak form but this method is 

not suitable for large deformations and nonlinear 

materials, rather for quasi-static small deformation. 

Therefore, in this paper we use the strong equation that is 

appropriate for biomedical engineering application.  

As shown by [7], [17] the stress-strain behavior of the 

brain tissue is nonlinear. This model is suitable for low 

strain-rates typical for surgical procedures. In this paper 

we use the model suggested in [7]:  






dJJ
d

d

egCW

ji

N

ji

n

k

t

kij

t

k

]})3()3[(

)1(1{

21

1 1

/)(

0

0



















  

 



 

(3) 

Where k  is characteristic time, gk is the relaxation 

coefficient, N is the order of polynomial in strain 

invariants and J1, J2, and J3  are strain invariants: 
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(4) 

B is left Cauchy-Green strain tensor. In this paper we use 

the stationary form of the equation (6) because we solve 

the problem for the steady state form of deformation 

when the deformation of the brain is finished. The initial 

value of model's parameters are taken from [7] for n=2, 

N=2 as summarized in Table I. 

2.3. The Optimization Process 

However, the parameters of brain in every model are not 

certain for every people and usually approximated 

parameters are used. In this paper, we use optimization 

process to optimize these parameters to achieve the best 

result in comparison to defined deformation. To this end 

we choose a cost function that can be determined by the 

sum of displacement between the defined deformation of 

some special points and the deformation of those points 

from results of two models. We use Maltlab optimization 

toolbox for optimization procedure.       

The displacement of special points can be defined by 

surgeon or imaging device such as MRI, CT, or 

spectroscopic camera. As mentioned before, the 

resolution of these images in operative room is not good 

and because of that it would be better to make images 

from special part e.g. exposed surface of the brain or 

some parts that were much important to surgeon like 

tumor.  

In both methods we have some parameters to 

optimize. In first model, we can't determine the force 

applied to the exposed surface of brain. This parameter 

can be defined by optimization process. Two parameters: 

Young modulus and Poisson’s ratio are determined in 

other paper but they are not certain for every people so, 

these two parameters will be optimized.  

In second model, like first one we can't determine the 

force applied to the expose surface so, this parameter 

would be determined by optimization function. Also, the 

parameters in table (1) that are not certain for every 

people are used as optimization parameters to minimize 

the cost function. 

By using more defined points the accuracy of our 

model will be better and the estimated displacement for 

points inside the brain such as tumor would become more 

precise. 

2.4. Boundary Conditions 

For solving partial differential equations we need some 

boundary condition. As mentioned before, for testing our 

method we use a sphere as a simple model for the brain 

and for modeling the craniotomy we assume one section 

on the sphere to be exposed. So, this section would be 

free and the rest of them are fixed (Figure 2).  

 For the first model we have conditions for 

displacement variable and F (force per unit). The 

boundary nodes that are not exposed are fixed. We use 

F=u for boundary conditions of fixed boundary nodes 

because the elements of the rigidity matrix K in equation 

(3) that the deformation is supposed to be known need to 

be set to zero, and the diagonal elements of these rows to 

one. More detailed can be found in [10].  

Also, for the second model boundary condition for F 

in addition to displacement (u) must be determined. 

Because this model is nonlinear we can't summarize the 

TABLE I 
Table 1. List of material constants for model of brain tissue. 

Instantaneous 
response 

Characteristic time 
t1 = 0.5 (s) 

Characteristic time 
t2=50 (s) 

C100= 263 (Pa) g1=0.450 g2=0.365 

C010= 263 (Pa)   

C200= 491 (Pa)   

C020= 491 (Pa)   

 

 
Figure 2. Boundary condition for all models 



equations to one equation like equation (3). So, we ca not 

determine it and it would be an optimization parameter.  

By using these conditions for implementing models 

the deformation of whole brain can be determined and 

that can be sued to determining some important part like 

tumor. 

3. Results 

For modeling the brain, we use a sphere with the diameter 

of 22 Cm that is approximately the size of the brain. To 

show the skull opening, we assume that one section of 

this sphere is exposed and others are fixed. We assume a 

model with special parameters and define the deformation 

of some points. Then we change the parameters and use 

the optimization process to estimate the assumed model's 

parameters by using displacement of some points. This 

can show us how much the optimization process can 

estimate the real parameter of brain by using the 

displacement of some points. For each model we do this 

process and compare the accuracy of models using error 

of optimization function and the error of displacement of 

some other points that we do not use in optimization 

process. To implement models, we use the FEMLAB3.3 

software which is based on the finite element methods for 

solving partial differential equations. This software has 

visualization, meshing, solving the problem, and strong 

post processing modules. 

Figures 3-4 show the first and second model’s result. 

As can be seen both model show the deformation of brain 

continuously. The first model optimization error is 

0.1172 mm, the error for other points that we do not use 

in optimization process is 0.2731 mm. The second model 

optimization error is 0.0683 mm, the error for other 

points that we do not use in optimization process is 

0.1915 mm. Therefore, the accuracy of second model is 

better than the first one but it must be consider that the 

implementation time of second model is approximately 

six time more than the first one and in this project the 

time is one of important factor. This happen because the 

first model is linear but the second model is nonlinear and 

more complicated than the first one.  

In sum, the second model can estimate the parameters 

more accurately but it take much more time to implement 

and this is because of the complication of this model.      

4. Conclusion 

Mathematical modeling and computer simulation have 

proved successful in engineering. Computational 

mechanics has enabled virtual technology in several 

fields. One of the greatest challenges for mechanical 

problem is the success of computational mechanics in 

particular field of biomedical science and biomechanics. 

In computational science, the most important part in the 

solution of the problem is the selection of the appropriate 

physical and mathematical model to be investigated. 

Model selection is a subjective process, based on 

analyst’s judgment and experience. Nevertheless, model 

selection is an important step in obtaining valid results. 

To this end, we choose two linear and nonlinear 

a)  

b)  
Figure 4. Result of the second model (a) the total displacement of 

subdomain and (b) the slice plot of total displacement 

a)  

b)  

Figure 3. Result of the first model, (a) the total displacement of 

subdomain and (b) the slice plot of total displacement 



mechanical models that describe the mechanical property 

of brain based on finite and large deformation 

respectively and implement them on a simple sphere. The 

first model is based on this principle that the sum of 

virtual work from internal strains is equal to work from 

external loads and the second model is based on equation 

of equilibrium that related the covariant differentiation of 

stress to body force. The accuracy of nonlinear model is 

better than the linear one but it is too complicate and it's 

implementation time is much more than the second 

model. Therefore, depend on the condition of surgery 

each model have good accuracy and can be used.   By 

using the result of implementing these models on a 

sphere, we can select the best model for estimating the 

deformation of the brain. 
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