
1

A Novel Approach in Adaptive Traffic Prediction in Self-Sizing 
Networks Using Wavelets

Hamed Banizaman Hamid Soltanian-Zadeh
PhD Student of Elec. Eng.

Yazd University
Control and Intelligent Proc. Center of Excellence,

Dept. of Elec. & Comp. Eng., Univ. of Tehran
Radiology Image Analysis Lab., Henry Ford Health

System, Detroit, MI 48202, USA
hbanizaman@stu.yazduni.ac.ir hszadeh@ut.ac.ir

Abstract: In this paper we propose a traffic predictor
based on multiresolution decomposition for the adaptive 
bandwidth control in locally controlled self-sizing 
networks. A selfsizing network can provide quantitative 
packet-level QoS to aggregate traffic by allocating 
link/switch capacity automatically and adaptively using 
online traffic data. In a locally controlled network such 
as Internet, resource allocation decisions are made at 
the node level. We show that wavelet based adaptive 
bandwidth control method performs better than other 
classical methods in the case of average queue size and 
maximum buffer size. We have compared the 
performance of different Wavelet-Energy. Different 
ortho-normal wavelets have been compared and found 
that all the other wavelets do far better than Haar with 
respect to bandwidth utilization factor but Haar shows a 
very good queue performance. We have studied the 
effect of other wavelet parameters such as size of the 
window, number of decomposition levels and number of 
filter coefficients. We also introduce a novel adaptive 
wavelet predictor which can adapt very well to the 
changes of incoming bursty traffic based on different 
window sizes and decomposition levels.

Keywords: Wavelet, Self-Sizing, Self-Similarity,
DRA.

1. Introduction

Today’s multi-service Internet is facing seemingly 
insurmountable challenge of allocating resources 
efficiently and to provide guaranteed QoS to an
ever increasing network traffic, which is 
unpredictable, and whose statistical characteristics
are unknown. Network researchers have reaffirmed 
that either capacity overprovisioning or connection
level resource reservations (static or dynamic)

cannot provide a scalable solution to this problem. 
A self-sizing network can allocate network 
capacity automatically and adaptively using on-
line traffic data to satisfy the quantitative QoS at 
packet level. In [7], a self-sizing framework has
been proposed for locally controlled networks such 
as Internet, in which the resource allocation 
decisions are made at the node level. Authors show 
that, by performing online resource allocation at 
each node based on their local knowledge, we can 
achieve considerable bandwidth savings and also 
satisfy QoS at the packet level.

The main component of the self-sizing 
network is the algorithm, which is used for 
bandwidth allocation using predicted network 
traffic. We need an algorithm which is fast, 
accurate and robust to provide absolute QoS 
requirements for aggregate traffic. Such an 
algorithm should take the QoS requirements as 
input and provide absolute guarantees based on 
online traffic measurement without the knowledge 
of the underlying traffic model. Dynamic 
bandwidth allocation algorithms have been 
proposed by researchers in the past under different 
contexts. In [5] number of adaptive bandwidth 
allocation algorithms have been discussed and 
Gaussian predictor proposed by Duffield et al. was 
found to be very efficient and best suitable for such 
applications. Therefore in our paper, we have
compared the performance of our wavelet predictor 
with this Gaussian predictor.

Wavelet based traffic models have been 
proposed by number of authors for different 
applications. Abry and Veitch have used wavelets 
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to analyze the long-range dependent traffic and 
have proposed a semi-parametric estimator for the 
Hurst parameter. In [6], a multi-fractal wavelet
model has been proposed for positive valued data 
with long range dependent correlations, using Haar 
wavelet transform. Wang et al., have proposed an 
adaptive wavelet predictor for modelling VBR 
video traffic. They show that in comparison with 
the LMS predictor, the wavelet predictor reduces 
the prediction error by an average of 11% over the 
six half-an-hour-long empirical MPEG-1 traces.
Xusheng et al. use wavelet based models to 
provide a uni-fied view to include most important 
understanding of the network traffic in [4]. Z. 
Sahinoglu et al. have developed a hybrid model 
which combines the input information and the 
measured queue size. The short term and long term 
fluctuations of the arrival rate have been separated 
into different frequency bands using wavelets and 
this information is used with the measured average 
queue length to compute the allocated bandwidth.

In this paper we show that our wavelet 
based traffic predictor is accurate and robust 
compared to other adaptive bandwidth control 
algorithms [5]. Most of the above cited wavelet 
based predictors have been proposed either for off 
line analysis or for longer time scales. The 
technique used in our paper can be applied to 
online traffic and works at very low time scales 
(packet level, one tenth of a second to seconds).
We have improvised the work presented in [3], by 
analyzing the performance of different wavelet-
energy methods and orthonormal wavelets. We 
have also studied the effect of other wavelet 
parameters such as size of the window, number of 
decomposition levels and number of filter 
coefficients. At the end of the article, we also 
introduce a novel adaptive technique which 
exploits one of these parameters. In the next
section we introduce the internet traffic 
characteristics. We explain the wavelets and 
Multiresolution decomposition in section 4. 
Multiresolution decomposition method and its 
application in traffic prediction have been 
discussed in section 5. Experimental results and 
analysis is given in sections 6 , 7 and our 
conclusions in the last section.

2. Internet Traffic Characteristics

Significant research has been conducted over the 
last decade analyzing the statistical characteristics 
of multiplexed data traffic. One of the earliest 
studies, in [2], led to the examination of such 
traffic from the perspective of fractal or self-
similarity theory. In the case of stochastic objects 

like time series, self-similarity is used in the 
distributional sense: when viewed at varying time 
scales, the object's relational structure remains 
unchanged. As a result, such a time series exhibits 
bursts at a wide range of time scales ranging from 
10 ms to 100 seconds. Such behaviour differs 
dramatically from traditional short-range 
dependent processes which are often modelled
using distributions such as Poisson or Exponential.
Recent work has suggested that the source of such 
LRD is due to the superposition of many individual 
On-Off sources.

A mathematical description of self-similarity 
can be concluded as follows [2]. Assume an 
increment process ���� � 1,2, … � and another 
process ���
��� � 1,2,… � which is obtained by 
averaging the values in non-overlapped blocks of 
size m in ��, i.e.,
���
� � �


 ���
�
�� � ��
�
�� ��� ��
� (1)
The process �� is said self-similar with self-
similarity parameter H if 
���
� ����� ������ (2) 

The symbol 
����� denotes equality in distribution. It 

is proved in [2] when �0.5 � � � 1� the ACF of 
�� is not summable and �� is called LRD (long
range dependency). Accordingly, when �0 � � �
0.5� �� is called SRD (short range dependency). 

3. Signal Processing Approach to Traffic 
Analysis and Prediction

One of the key issues in a measurement-based 
network rate and congestion control mechanism is 
the ability to predict bandwidth requirements 
across a time interval based on current and past 
measurement data. By performing such prediction, 
the development of proactive rather than reactive 
control methodology becomes possible.

The objective of this prediction, in the 
context of real-time control, is to forecast future 
traffic loads as precisely as possible over a desired 
time horizon while maintaining reasonable 
computational complexity. Through forecasting 
and avoiding of congestion, system loss can be 
reduced as compared to reactive, feedback based 
control mechanisms. This objective, however, must 
be achieved in the face of two opposing 
constraints. On one hand, a large prediction 
interval is required to ensure sufficient data 
collection and adequate time for control actions. 
On the other hand, a small prediction interval is 
required to ensure optimal prediction accuracy. 
Further, precise prediction accuracy is required to



ensure optimal bandwidth utilization and queuing 
behaviour.

In this context, Fig. 1 illustrates a conceptual 
block diagram of a signal processing approach to 
real-time network traffic control.
approach incorporates the use of wavelets, which 
are promising as a basis for traffic prediction due 
to their inherent scalability being well
the scaling properties of long-range dependent 
Internet traffic.

Figure 1 Traffic Management in Signal Processing 
Context

Network traffic can represented by a 
continuous time stochastic process as
 �!� � "�!� � #

# is the mean
 �!� and where "�!� is a purely random process 
with zero mean. The prediction goal is to estimate 
 �! ��� from the measured traffic 
�$∞, !&'; where m is the next control interval.

4. Introduction to Wavelets

The wavelet transform is a tool that divides the 
functions or data into different frequency 
components, and then studies each component with 
a resolution matched to its scale. The wavelet 
transform of a signal evolving in time depends on 
two variables: scale (or frequency) and time; 
wavelets provide a tool for time frequency 
localization. Let X(t) be a continuous
with a finite energy. Its continuous wave
transform is given by the inner product
(�), *� � + ��,�-.,/�,�0,�1

�1  
Where
-.,/�,� � |)|�3

4-5)���, $ *�6, ) 7 8�

is the basis function of the transformation, called a 
wavelet. The wavelet -.,/�,� is obtained by 
dilating (by a factor of a) and time shifting (by 
time units) of a reference function 
mother wavelet. a is called a scale factor
translation factor. In some cases, it is possible to 
sample (�), *� without loss of information about 
X(t). The sampling of the time-
performed on a dyadic grid: ) � 2
9�, : 7 9  and the resulting transformation is 
called discrete wavelet transform

S(t)
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�, * 7 8 (5)  
is the basis function of the transformation, called a 

is obtained by 
) and time shifting (by *

time units) of a reference function -�,� called a 
scale factor and * is a 

In some cases, it is possible to 
without loss of information about 

-scale plane is 
2�, * � 2�:, � 7

and the resulting transformation is 
discrete wavelet transform (DWT). The

value j is called octave and 
resulting wavelet coefficients are
=>�,? � (�2�, 2�:� � + ��,∞

�∞
+ ��,�-�,?�,�0,∞
�∞

=>�,?, is referred to as the wavelet 
coefficients at scale � and time 
represents the signal X(t)
wavelets. If the sum over j
j > j2 and 1 ≤ j ≤ j2, signal representation
form
��,� �
∑ ∑ =>�,?1?A�11�A�4�� -�,?�,� �
∑ ∑ =>�,?1?A�1
�4
�A� -�,?�,� �

∑ =B�4,?C�4,?�,� �1?A�1 ∑ ∑�4
�A�

B�4 � ∑ >��4
�A�

The first term in Eq. 
approximation of the signal at the octave
second term is a sum of details
approximation, it produces
The function C�4,?�,� is called a 
octave ��. The corresponding coefficie
are called approximation coefficients
The octave �� measures the level of detail in the 
approximation. When 
approximations become coarser and vice versa.
4.1 Multiresolution Decomposition
DWT consists of decomposition (or analysis) and
reconstruction (or synthesis).
general form of three Level 
Wavelet analysis (��=3). 

Figure 2 three Level Wavelet analysis

The DWT captures a signal at various
or levels of aggregation. Due to
invariance of the basis functions, it is suitable for 
analyzing properties that are present across a range 
of time scales, such as LRD.
transformation of the signal from a set of time
domain values to a set of wavelet domain 
coefficients, the characteristics of the signal are 
transformed from a long
short-range dependent set of parameters.

5. Self-similarity and 
In this approach we decompose t
traffic data into a number of frequency

h(n) 
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and k is translation. The
resulting wavelet coefficients are

,�2�E
4-�2��, $ :�0, �

(6) 
is referred to as the wavelet 

and time 2� F :. The DWT 
as a weighted sum of 

’s is split in two regions,
signal representation takes the

�

∑ =>�,?1?A�1 -�,?�,� �
(7) 

The first term in Eq. (7) represents an 
of the signal at the octave ��. The 

details. When added to the 
approximation, it produces the original signal X(t).

is called a scaling function at 
The corresponding coefficients =B�4,? 

approximation coefficients at octave ��. 
measures the level of detail in the 
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Multiresolution Decomposition
DWT consists of decomposition (or analysis) and
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evel One- Dimensional 
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The DWT captures a signal at various time scales 
or levels of aggregation. Due to the scale 
invariance of the basis functions, it is suitable for 

are present across a range 
of time scales, such as LRD. Through 
transformation of the signal from a set of time-

alues to a set of wavelet domain 
coefficients, the characteristics of the signal are 
transformed from a long-range dependent to a 

range dependent set of parameters.
and sub-band Energies

In this approach we decompose the time series 
traffic data into a number of frequency bands, 



every element of which has the traffic arrival rate 
information. Here, we separate the low and high 
frequency components of the traffic arrival 
process. This gives us the contribution of each 
frequency band on the main traffic pattern. We use 
this information to predict the new traffic arrival 
rate.
5.1 Multiresolution Dynamic Resource 

Allocation Algorithm
In Fig. 3, the typical architectural diagram of
Algorithm using the signal energies in
band and momentary queue size as illustrated. 
Consider a data 
�G? � H��! $I � 1�, ��! $I � 2
time n, where k is the time scale and M is an 
integer. Each element of vector �
amount of traffic received in time slot 
algorithm first filters out the DC component in 
traffic measurements, �G. This DC value is taken as 
the lower bound for the bandwidth allocation in the 
next time slot to prevent the application from 
bandwidth starvation. The signal at the output of 
the DC filter, �J, consists of low and high
frequency components. The signal is fed into a 
filter bank in which high pass filter is
Haar wavelet coefficients and low pass filter is of 
Haar wavelet scaling coefficients. The signal 
analyzed by decomposing it into
frequency sub-bands. �G is the non
input data vector of length M a
filtering, R is the wavelet transformation matrix, 
and K � �J. L is the wavelet transform coefficients 
vector. If the input data vector 
samples where I � 2M,N O 0,N 7
R has the size I PI. The window size M decides 
the number of sub-band filters used
decomposition. The energy content in each sub
band frequency or time scale k can be computed as
Q? � ∑ |K�!�|��R

SA�RT3��  , 1 U : U N
where k is the scale index and 
K � H(� (� (V (W (X (Y (Z ([&
energy at different scales can be found by applying 
above equation to K. Here we introduce 
additional wavelet-energy approaches and compare 
their performances.
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Figure 3 diagram of the wavelet decomposition 
technique in dynamic bandwidth allocation

*Method-I: \K�! � 1� � �
*Method-II: \K�! � 1� �
*Method-III: \K�! � 1� �
*Method-IV: \K�! � 1� �

6. Simulation experiments, results and 
analysis

We have implemented our prediction
method in ns-2 and conducted a simulation study 
to validate the proposed design and compare the 
performance. To examine the fundamental 
operation of algorithm within a node (routers 
a simple topology with a single bottleneck link was 
used (see Fig. 4).

Figure 4 Simulation to

We have used the pareto on/off (self
traffic sources with the following parameters:

• Number of on/off sources used for 
aggregation (n) = 100

• Mean on time of a source in millisecond = 
0.02

• Mean off time of a source in millisecond = 
2.0

• Packet generation rate per second 
• Mean inter-arrival time between packets = 

0.002
For all the experiments, we have used the 

measurement time scale as 
time scale is based in window size.
the window size (M) of 2,4,8,16
different simulation experiments.

In the following sections, we have compared 
the performance of our predictor with other
predictors under the constraint that the number of 
renegotiations are kept the same. 
is made in terms of average queue size
mean square bandwidth allocation error
(MSBAE) and maximum buffer size
MSBAE is the sum of the squares of the difference 
between each bandwidth demand and the 
allocation divided by the number of traffic 

]̂
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of the wavelet decomposition 
technique in dynamic bandwidth allocation

�`a�!� � b∑ Q��!�M�A�
�`a�!� � ∑ bQ��!�M�A�  

� K?�1� � b∑ Q��!�M�A�
� K?�1� � ∑ bQ��!�M�A�  

Simulation experiments, results and 

We have implemented our prediction-based 
 and conducted a simulation study 

alidate the proposed design and compare the 
performance. To examine the fundamental 
operation of algorithm within a node (routers ≡ R),
a simple topology with a single bottleneck link was 

Simulation topology

We have used the pareto on/off (self-similar) 
traffic sources with the following parameters:

Number of on/off sources used for 
100

Mean on time of a source in millisecond = 

a source in millisecond = 

generation rate per second = 500
arrival time between packets = 

For all the experiments, we have used the 
measurement time scale as 0.1 sec and adaptation 
time scale is based in window size. We have used 

2,4,8,16 and 32 for the 
different simulation experiments.

In the following sections, we have compared 
the performance of our predictor with other classic 

constraint that the number of 
enegotiations are kept the same. The comparison 

average queue size (in bytes),
mean square bandwidth allocation error

maximum buffer size (in bytes).
MSBAE is the sum of the squares of the difference 
between each bandwidth demand and the 
allocation divided by the number of traffic 
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samples. An infinite buffer is assumed, and 
therefore, no packet loss due to a buffer overflow. 
In every time slot, the algorithm returns a 
bandwidth prediction. We have also studied the 
performance of different orthonormal wavelets and 
the effect of other wavelet parameters. At the end 
of this section, an adaptive DRA Algorithm have 
been proposed which exploits one of these 
parameters.
6.1 Comparison of Wavelet Predictor with 

other Predictors
In this experiment we have compared the 
performance of Average, Previous, Previous + 
Average, Gaussian and Wavelet-based bandwidth 
allocation methods. Also we have used 2nd and 3nd

level Haar decomposition for this experiment. In 
Fig. 5, the traffic is shown with vertical axis 
representing the number of bits received and 
horizontal axis the time index with an interval of 
0.1 s. Results are shown in Table1. Also Fig. 6
compares the queue performance of different 
predictors with wavelet predictor. According to 
Table 1 wavelet-energy method is not the best to 
have a minimum MSBAE. However, it results in 
the smallest queue and buffer size among the 
others. Also It is easily seen in Fig. 6 that wavelet-
energy method converges faster than all others, 
results in less queue size, and accordingly smaller 
queuing delays.
6.2 Comparison of different Wavelet-Energy 

Methods
Four different wavelet-energy types have also been 
compared in terms of their MSBAE, Average 
Queue size and Maximum queue size 
performances for the same synthetic trace. Fig 7
and 8 show outputs and queue size performance of 
four wavelet-energy methods. Assume BWi is a 
bandwidth amount allocated by wavelet method i 
where i =1,2,3,4. Considering the fact that BW4 > 
BW3 > BW2 > BW1 ,the lowest MSBAE and the 
highest queue size are expected from method-I, and 
the highest MSBAE and the lowest queue size 
from method-IV. As shown in Table 2, method-I 
has the worst queuing performance and method-IV 
the best.
6.3 Comparison of  the performance of 

different wavelet
In this section We have compared the 
performances of Haar, Symlet (sym4), Daubechies 
(db4) and Coiflet (coif4) wavelets. Fig 9 shows 
predictor performance for different wavelet filters. 
It is clear that all the other wavelets do far better 
than Haar with respect to MSBAE but Haar shows 
a very good queue performance. Maximum queue 

size for all wavelet predictors is the same and 
equal 3000 bytes.
6.4 Effect of Window Size on Predictor 

Performance
Fig 10 shows average queue size of Haar wavelet 
predictor with different window size. Also Table 3
shows predictor performance for different window 
size. It is clear that as we go for higher window 
sizes, queue and buffer size improves but the error 
increases.
6.5 Effect of the Decomposition Level on 

Predictor Performance
In this experiment we have compared the 
performance of Haar and Daubechies (db4) with 
respect to number of decomposition levels. Since 
we know that number of decomposition levels is 
dependent on the window size, we have used 
window sizes of 8. This allows us to study up to 3
decomposition levels. Fig 11 shows the queue size 
performance of wavelet predictor for different 
decomposition levels in case of Haar and db4
wavelet. From Table 4 and Fig 11 it follows that as 
we go for higher decomposition levels queue and 
buffer size improves but the error increases.

6.6 Effect of Number of Filter Coefficients
In this experiment we increase the filter 
coefficients of Daubechies filter from 2 to 8. From 
Table 5 it follows that as we increase the number 
of coefficients there is an improvement in MSBAE 
but there is a degradation in queue performance. 

7. Adaptive Wavelet Predictor

From the above experiments it can be observed 
that, the performance of the wavelet predictor can 
be tuned by the window size and number of 
decomposition levels used. The basic block 
diagram for the Adaptive Wavelet Predictor is 
shown in Fig 12.
7.1 AWP based on Window Size
In this section, we introduce an Adaptive Wavelet 
Predictor  based on window size. Fig 13 shows 
MSBAE of Haar wavelet Predictor for window 
sizes 2,4,8,16 and 32. We can classify different 
WS by their margins and adapt Window Size in 
real time application according to MSBAE 
achieved. Table 6 compare AWP performance with 
other Haar wavelet predictors. Also Fig 14 shows 
the number of different WS used in AWP. It is 
clear that window sizes 8 and 4 utilize the most in 
AWP.
7.2 AWP based on Decomposition Level
In this section, we introduce an Adaptive Wavelet 
Predictor  based on Level of Decomposition. We
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use a simple algorithm to compute Level for each 
iteration as follow:
dif = Current MSBAE – Previous 
MSBAE; 

if dif < 0 

      New Level = Old LEVEL + 1; 
else 

      New Level = Old LEVEL - 1; 

end  
Table 7 compare AWP performance with 

other Haar wavelet predictors. Also Fig 15 shows 
the number of Decomposition Level used in AWP. 
It is clear that Level 2utilize the most in AWP. 

8. Conclusion 

We have proposed an adaptive wavelet predictor 
for locally controlled self-sizing networks. We 
have compared the performance of wavelet based 
predictor with other popular methods such as 
Gaussian predictor. We have done a systematic 
study of the effect of different wavelet parameters 
on the predictor performance. We found that there 
is a trade-off between MSBAE and queue size 
performance for all wavelet predictors. It is clear 
that all the other wavelets do far better than Haar 
with respect to MSBAE but Haar shows a very 
good queue performance. Our experimental results 
suggest that wavelet predictor can be made robust 
by varying the window sizes and levels of 
decomposition adaptively. 

 
Figure 5 Traffic Samples 
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Figure 10 Average Queue size of wavelet predictors for 

different window sizes 
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Figure 11 Average Queue size of wavelet predictors for 
different Decomposition Level

 

Figure 12 Basic block diagram of Adaptive Wavelet 
Predictor 

 

Figure 13 MSBAE variation for Haar wavel
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Figure 14 Histogram of different Window Size used in 
Adaptive Haar Wavelet Predictor
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Table 1 Comparison of wavelet predictor with other 
predictors for 

Predictor Type MSBAE 
Queue Size

Average  5.412 
Previous 7.065 

Previous + 
Average 

8.697 

Peak  10.866 
Gaussian 11.854 

Haar (Level 2) 11.854 
Haar (Level 3) 14.847 

 
Table 2 MSBAE and queue size trade

wavelet-energy methods
Predictor Type MSBAE 

Queue 
Method I  14.847 
Method II 21.715 
Method III 22.404 
Method IV 29.344 

Table 3 Effect of window size on Haar wavelet 
predictor performance

Predictor 
Type 

WS MSBAE 

Haar (L1)  2 8.977 
Haar (L2) 4 11.113 
Haar (L3) 8 14.847 
Haar (L4) 16 20.588 
Haar (L5) 32 29.022 

 
Table 4 Effect of decomposition levels for 

Predictor 
Type 

Decomposition 
Level 

MSBAE

Haar  1 12.076
Haar  2 14.081

Haar  3 14.85

Db4  1 13.033
Db4  2 20.321

Db4  3 23.38
 

Table 5 Effect of number of filter coefficients
Predictor Type MSBAE 

Queue Size

Db2 16.928 
Db4  23.380 
Db8  29.135 

4100 5000
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Histogram of different Decomposition Level 

used in Adaptive Haar Wavelet Predictor 

Comparison of wavelet predictor with other 
predictors for WS 8 

Average 
Queue Size 

Max Queue Size 

2245 9187 
19893 70000 

572 5375 

76 4000 
55 3127 

39.7 3000 
32 3000 

 
MSBAE and queue size trade-off in different 

energy methods 
Average 

Queue Size 
Max Queue Size 

32 3000 
17.74 3000 
15.57 3000 
11.57 3000 

Effect of window size on Haar wavelet 
predictor performance 

Average 
Queue 

Size 

Max Queue 
Size 

227.11 4000 
113.75 3500 
32.016 3000 
2.721 1751 
0.096 365 

 
decomposition levels for WS 8 

MSBAE Average 
Queue 

Size 

Max 
Queue 

Size 
12.076 80.620 8500 
14.081 39.700 3000 

14.85 32.016 3000 

13.033 67.858 4250 

20.321 20.523 3000 

23.38 15.650 3000 

Effect of number of filter coefficients 
Average 

Queue Size 
Maximum Queue 

Size 

26.398 3000 
15.647 3000 
11.406 3000 

������2 ������3

355 165

Histogram of Decomposition Level in 
AWP 
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Table 6 Comparison performance of AWP with other 
Wavelet Predictor 

Predictor 
Type 

WS Decompos
ition 
Level 

MSBA
E 

Average 
Queue 

Size 

Max 
Queue 

Size 
Haar 2 1 8.9773 227.116 4000 
Haar  4 2 11.1133 113.757 3500 

Haar 8 3 14.847 32.016 3000 
Haar 16 4 20.588 2.721 1751 

Haar-Adaptive M Log2M 10.9772 85.898 4500 

 
Table 7 Comparison performance of AWP with other 

Wavelet Predictor 
Predictor Type Window 

size 
Decomposition 

Level 
MSBAE 

Haar 8 1 12.076 

Haar  8 2 14.081 

Haar 8 3 14.847 

Haar(Adaptive) 8 Adaptive 13.78 
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