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Abstract 
In this paper, we present a non-rigid image registration method for DTMR images. This method consists of 
finding control points using a piecewise affine registration and then estimating final transform between two 
images by minimizing corresponding Least Squares Support Vector Machine (LS-SVM) function of these control 
points. In our shceme, a fully symmetrically grid points in the reference image is selected and the transformed 
grid points is computed using the results of piecewise affine registration. These control points are then employed 
to estimate final transform between images using minimizing related LS-SVM function. In both piecewise affine 
registration and final transform function estimation, a finite strain (FS) based reorientation strategy is applied to 
adopt these methods for DTMR images. The main advantage of this method is that in estimating transform 
function using control points, it considers all control points and thus all transforms of sub-images. Therefore, 
each point in the reference image is transformed consistently with the whole image points. 
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1. Introduction 
Diffusion Tensor Magnetic Resonance Imaging (DTMRI) 
is a noninvasive tool for determining white matter 
connectivity in the brain. DTMRI adds to conventional 
MRI the capability of measuring the random motion of 
water molecules, referred to as diffusion. It has been 
known that the water molecule motion is restricted in the 
axons due to existence of myelin sheath [1,2]. Therefore, 
the most important distinctive characteristic of DTMR 
images is that they have directional information of 
microtubule living structures. Direction at each voxel is 
computed mathematically using a 3×3 symmetric positive 
semi-definite matrix D, known as Diffusion Tensor (DT), 
provided by DTMRI. Consequently, working with and 
processing of DTMR images are more complicated than 
other conventional image modalities. 
On the other hand, image registration is a useful tool in 
group normalization, atlas construction, and automatic 
multi structure segmentation. However, applying 
conventional image registration methods to the DTMR 
images can not get acceptable results without considering 
orientation information of these images. Therefore, it has 

been proposed to use tensor reorientation strategies when 
applying spatial transformation to a DTMR image [3]. 
In [3] two main reorientation methods have been 
proposed: Finite Strain (FS) method and Preservation of 
Principal Direction (PPD). FS computes a rotation matrix 
from the transform function and then applies it to the 
tensors such that direction of eigenvectors of each tensor 
rotates consistently with the original spatial transform.    
On the other hand, PPD considers more information 
about transform and it is useful for large deformated DT 
images. Therefore, for common image registration and 
normalization the FS reorientation strategy is usually 
sufficient. 
In [4] different combinations of channels for image 
registration were used, including four channels of scalar 
characteristics of diffusion tensor and one channel  of 
components of diffusion tensor. Although they did not 
use reorientation strategy in the last channel, but they 
concluded that using whole diffusion tensor components 
in image registration get better results than other 
combinations. 
Several non-rigid DTMR image registration procedures 
have been proposed, recently. Some of them use affine 
registration as a basis and then by applying it in different 



parts of the images find a non-linear transform to match 
the images [5,6]. On the other hand, some methods use 
multi resolution schemes by increasing the complexity of 
transform function in each level of registration [7].  
One of the important issues of piecewise affine 
registration is the problem of combining resulting 
transforms which are belong to different parts of images.  
In [5] an interpolation method between neighbored 
transforms was proposed. Unfortunately, this solution 
only considers limited number of neighbors to estimate 
transformed border voxels. Thus the resulting 
transformed regions may be inconsistent with the whole 
transformed image. 
On the other hand, in [8] a scheme for image registration 
using least square support vector machines (LS-SVM) 
was presented. The important capability of this method is 
that it estimates a non-linear transform between two 
images using some control points from the images. 
However, this method has been not used in DTMR image 
field yet. 
The aim of is this work is to develop a non-rigid image 
registration method for DTMR images using piecewise 
affine transform and least square support vector 
machines. In our scheme we first compute some control 
points from two images. These control points are used to 
estimate a transform function between two images by 
minimizing their LS-SVM function, in combination with 
reorienting the diffusion tensors during the transform.  

2. Methods 
In order to find some reliable control points between to 
images we apply a piecewise affine registration. For this 
purpose, these two images are divided into nx×ny×nz sub-
images. Then an affine transform is computed using a 
registration algorithm for each sub-image. Finally, a grid 
of points is selected in the reference image and the 
corresponding transformed points are computed using the 
resulting sub-transforms.  

2.1. Piecewise affine registration 
An affine transform, Ap(.), can be expressed by 12 
parameters: 3 parameters for rotation (q), 6 for 
deformation (s), and 3 for translation (t). Transformed 
point, y, of a point, x, can be computed by the following 
equation:  

(1) )()..( xATxSQy p=+=  

where Q is the 3×3 rotation matrix with 3 independent 
parameters, S is the 3×3 deformation matrix with 3 
independent parameters, T is the 3×1 translation vector, 
and finally, p is the whole unknown parameter vector 
consists of [q, s , t]. 
In fact, image registration is a minimization problem of a 
dissimilarity criterion between two images. However, for 
DTMR images this criterion must handle the orientation 
of the tensors. [5] has used a dissimilarity function with 
FS reorientation strategy for affine registration, as shown 
in (2). 
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where Is(.) and Ir(.) are sensed and reference images, 
respectively, and Ω is the region in which the 
dissimilarity measure is computed. The second term of 
integral, Q.Ir(x).Qt, reorients the diffusion tensor in each 
voxel. 
This function can be minimized by gradient based 
optimization methods because its gradient expressions 
can be computed straightly. In [5] the gradient 
expressions of this function have been computed and we 
use them in a Conjugate Gradient (CG) algorithm to find 
unknown affine transform parameters. 
One of the basic problems of gradient based optimization 
methods is that they are easily trapped in local minimums 
if their object function is too complex. Therefore, we use 
an Evolutionary Algorithm (EA) to search for optimum 
parameters by minimizing function ф(.) before applying 
CG algorithm. 
 In EA, the unknown parameters (p) can be assigned with 
any values. This may lead the algorithm to too far 
solutions if the transformed point, i.e. y, lays out of range 
of the images (for example y=[-10,-20,3]t). Therefore, the 
cost function for EA should consider these out-range-
points. Our proposed cost function for EA is computed by 
(3). 
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where NΩ is the total number of points in Ω, and the 
function isOut(.) is defined as: 
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In summery, (3) adds the percentage of out-range 
transformed points to the previous cost function. This 
guarantees that inconsistent solutions are eliminated 

Algorithm1 
___________________________________________________

Begin 
• Divide given two DT images, sensed image and reference 

image, into nx×ny×nz equal size sub-images. 
• For each corresponding pair of sub-images (Ωs

ijk and 
Ωr

ijk, i=1,…, nx, j=1,…, ny, k=1,…, nz)  do the following 
steps: 

1. Twice each dimension of each sub-image by 
adding zero voxels to their peripheral sides. (This 
is essential in order to let transformed image 
rotate, translate, or scale beyond sub-image size). 

2. Apply evolutionary algorithm with cost function 
given in (3) to find an initial estimation p0

ijk of 
unknown parameters. 

3. Apply CG algorithm using initial point, p0
ijk, to 

minimize dissimilarity function given in (2) and 
find affine transform parameters pijk. 

end 
___________________________________________________
 
Fig. 1. Piecewise affine registration algorithm of DT images



during the iterations of EA. The summary of our 
piecewise affine registration algorithm is given in fig. 1. 
The remaining problem is that how to combine the 
resulting sub-transforms to build final transformed image. 
The problem arises mainly in the border voxels of sub-
images. [5] solves this problem by finding new sub-
transforms for those voxels using interpolation between 
neighboring sub-transforms. Unfortunately, this solution 
only considers limited number of neighbors to estimate 
transformed border voxels. 
We handle this problem by considering a grid of points in 
the reference image, for example 8 corner points of a 
cubic with half size in each dimension, centered on each 
sub-image (we will discuss about the strategy of selecting 
these control points on chapter 3.3), and calculate their 
transformed points using their corresponding sub-
transforms. Then, we employ these points as control 
points to estimate transformed image using LS-SVM.  

2.2. Transformation estimation via LS-SVM 
Suppose we have two corresponding point sets S and R 
belong to sensed image and reference image, 
respectively, and each set consists of N spatial control 
points. The aim of transformation estimation is to find a 
transform which map the sensed image control points, i.e. 
S, to the corresponding reference image control points, 
i.e. R. We use a model with linear combination of RBF 
functions as proposed in [8] and shown in (1). 
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Where x is the coordinate of a spatial point (x=[x1, x2, 
x3]t) in the sensed image and y is the estimated 
corresponding point in the reference image, and {xi, 
i=1,…,N} are N control points in the sensed image. The 
coefficients ai and b are computed using the following 
equations which are the solutions of minimizing this LS-
SVM problem [8]. 
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where Y is a 3×N matrix representing N control points in 
reference image, 1 is a 1×N vector consists of N ones, and 
Ω is a N×N matrix whose elements Ωij is computed using 
the following equation. 
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The parameters σ and γ are tuning parameters. While σ 
controls the depth of contribution of each control points 
in its neighborhood, γ determines a tradeoff between the 
model complexity and training error [8]. The small γ  
leads to better generalization while the large γ  leads to 
smaller approximation error of control points. In [8] it has 

been suggested an adaptive scheme to determine these 
parameters. But generally they can be chosen by prior 
knowledge or empirically. 

2.3. DT reorientation for estimated function 
Equation (1) only estimates the transformation function 
between two images. However, for DTMR images a 
reorientation strategy must be applied. FS reorientation 
strategy needs a rotation matrix Q for each tensor. For 
affine transforms this matrix can be computed easily, but 
for this nonlinear estimated function more calculations 
must be performed. 
Suppose for each voxel the nonlinear function in (5) can 
be expressed by an affine transform, i.e.  
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where Fx=Qx. Sx is the linear transformation matrix. 
Differentiating both sides of (9) subject to x gives, 
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where Jf(x) is the Jacobian matrix of function f(.) and can 
be computed using the following equation: 
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Now the rotation matrix can be estimated from computed 
Fx and the following relation proposed by [3]. 
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And finally, the transformed image It(.) of the reference 
image Ir(.) can be expressed as, 
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which consists of two transforms: spatial transform and 
tensor reorientation transform. 

3. Results and Discussion  

3.1. Data 
In this work we used two DTMR image data-set acquired 
in Henry Ford Hospital using a 1.5-T GE SIGNA 
EXCUTE system from two healthy volunteers. The 
resolution of each voxel in these data-sets was 0.9375 
× 0.9375 × 3 mm and the image size was 256 × 256 × 40 
voxels. For each slice 6 gradients in 6 directions was 
applied to get 6 diffusion-weighted images and one T2-
weighted image was acquired for each slice. 
In order to reduce the computation time, we 
downsampled each image slice to 128 ×128 voxels. This 
does not affect the generality of the problem. 

3.2. Pre-processing 
For each slice, we extracted brain using their 
corresponding 6 diffusion weighted-images and used this 



as a mask to cancel background noise. To building this 
mask we performed fallowing steps: 

• The image mask for each slice was calculated by 
averaging corresponding voxels of the 6 diffusion-
weighted images. 

• Assuming a threshold, voxels greater than this 
threshold were assigned to 1 and other voxels were 
assigned to 0. We selected this threshold equal to 250 
for this data set (The range of voxel values were 
between 0 and 15035). Two samples of this mask are 
illustrated in fig. 2 (a, b) . 

In the next step we calculated diffusion tensors for each 
voxel using a method suggested by [9]. This method is 
fast because it gives an analytical solution for computing 
tensors for whole image, rather than for every data point. 
In fig.2 (c, d) the first diffusion tensor component for 
reference and subject images are illustrated.  
After calculating diffusion tensors, the resulting images 
were aligned together using an affine registration 
algorithm, before matching them by our piecewise affine 
algorithm. This gives us an initial affine transform and 
thus reduces complexity of the next step of matching 
process. The algorithm we used was the algorithm in fig. 
1 with nx=ny=nz=1. The result of pre-matching of two 
images is illustrated in fig. 2 (e). 

3.3. Main registration procedure 
The main registration process consists of finding control 
points using piecewise affine registration and then 
estimating final transform between two images by 
minimizing LS-SVM functin of these control points. 
In the piecewise affine registration, i.e. algorithm 1, we 
chose nx=ny=16 and nz=5. Therefore, by extracting 8 
control points from each sub-image, 16×16×5×8=10240 
pairs of control points were computed. It may appear that 
by increasing the number of sub-images and consequently 
by increasing the number of control points, the resulting 
transform function is more precise, but the size of sub-
image should be large enough so that its voxels have 
enough needed information for registration process. For 
example registration of 2×2×2 sub-images can not lead to 
good results. 
Another important issue about control points is that how 
some points from each sub-image are selected as control 
points. At first glance, it can be said that this can be done 
without any restriction about the number or the position 
of these points. However, since we have used piecewise 
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Fig. 2. (a) and (b), computed masks for eliminating 
background noise correspond to reference image and 
subject image, respectively. (c) and (d), correspond to first 
component of diffusion tensor of reference image and 
subject image, respectively. (e) is the result of affine 
transform of reference image, computed by the affine 
registration. (f) is the final result of estimating transform  
function from control points computed using piecewise 
affine registration. And finally, (g) and (h) are the absolute 
differences between subject image and images (e) and (f), 
respectively.  All of these images correspond to slice 20 of 
image data set. 

 

 
 

 
Fig. 3. Illustration of a fully symmetrically grid points. 
Blue points are the control points and the red point is a 
border point which we want to estimate its transformed 
point from the control points. 



affine registration to match the images, two key points 
should be considered: 
• Since for each pair of sub-images an affine transform 

is computed (in the registration process), at least four 
non-planar spatial points should be selected from 
each sub-image to have the complete effect of this 
affine transform. 

• The control points should be located fully 
symmetrically in the reference sub-image space (see 
fig. 3). This consideration is the result of the fact that 
in the LS-SVM method, in order to estimate 
transformed point of a point in the reference image, 
the distances between that point and all control points 
is computed (see (5)). Therefore, the points on 
borders (for example the red point in fig. 3) should 
see equal distances from symmetric control points on 
the neighbored sub-images so that they see equal 
effects of neighbored transforms. 

Consequently, we selected 8 corner points of a cubic with 
half size in each dimension, centered on each sub-image 
to build our grid in the reference image. In fig. 4, a 
typical grid and its transformed grid are shown. 
After calculating control point grids, we estimated final 
transformed image, which is shown in fig.2 (f), using the 
method introduced in chapter 2.2. In this figure the 
absolute difference between subject image and final 
transformed image is also shown. It can be seen that this 
image is very similar to the subject image and there is not 
any inconsistent region thanks to the capability of LS-
SVM method to estimate a smooth transform function. 

4. Conclusion  
In this paper, we presented a non-rigid image registration 
method for DTMR images. This method consists of 
finding control points using a piecewise affine 
registration and then estimating final transform between 
two images by minimizing LS-SVM function of these 
control points. 
In piecewise affine registration the images are divided 
into equal size sub-images. Then, an evolutionary 

algorithm is applied to find an initial solution for affine 
transform parameters in each pair of sub-images. After 
that, a CG algorithm is used to refine this solution. 
In the final step, a fully symmetrically grid points in the 
reference image is selected and the transformed grid 
points is computed using the results of piecewise affine 
registration. These control points are then employed to 
estimate final transform between images using 
minimizing related LS-SVM function. In both piecewise 
affine registration and final transform function 
estimation, an FS based reorientation strategy is applied 
to adopt these methods for DTMR images.  
One of the advantages of this method is that in estimating 
transform function using control points, it considers all 
control points and thus all transforms of sub-images. 
Therefore, each point in the reference image is 
transformed consistently with the whole image points. 
Another advantage of this procedure is that it can be 
applied with different sub-image sizes and consequently 
with different grid sizes. This can help us to estimate a 
fine transform function between images from coarse to 
fine resolutions. 
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Fig. 4. A typical grid (blue stars), correspond to slice 20 of 
reference image, and its transformed grid (red points), 
computed from the result of the piecewise affine 
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