
 
 

 

  

Abstract—Main objective of this paper is to present methods 
and results for estimation of parameters of our proposed 
integrated magnetoencephalography (MEG) and functional 
Magnetic Resonance Imaging (fMRI) model. We use real 
auditory common MEG and fMRI datasets from 7 normal 
subjects to estimate the parameters of the model. The MEG 
and fMRI data was gathered at different times but the stimulus 
profile was the same for both techniques. We use independent 
component analysis (ICA) to extract temporal information 
from the MEG data. The stimulus correlated ICA component is 
used to estimate MEG parameters of the model. The temporal 
and spatial information of the fMRI datasets are used to 
estimate fMRI parameters of the model. Goodness of fit of the 
real data to our model confirms ability of the proposed model 
to simulate realistic datasets for evaluation of integrated 
fMRI/MEG analysis methods. It also makes it possible to use 
the proposed model in real applications. 

I. INTRODUCTION 
AGNETOENCEPHALOGRAPHY (MEG) and functional 
Magnetic Resonance Imaging (fMRI) have 

complementary spatial and temporal resolutions. fMRI has 
good spatial resolution but poor temporal resolution due to 
the limited rate of change in the hemodynamic response. On 
the other hand, MEG has good temporal resolution but its 
spatial resolution is poor due to ill-posedness of the inverse 
solution [1]. Integrated MEG/fMRI analysis should improve 
the overall spatiotemporal resolution of the results based on 
the fact that MEG and fMRI are different views of a 
common source (neural activity) [2-7]. 

Although MEG and fMRI signals originate from common 
sources (neural activities), there may be differences between 
the spatiotemporal responses of the two techniques [8]. An 
integrated bottom-up model based on physiological 
principles can illustrate the relationship between MEG and 
fMRI. However, there are limited works about MEG, 
electroencephalography (EEG), and fMRI integrated 
modeling in the literature [9-14]. 
 

Manuscript received September 28, 2007. This work was supported by 
grants from the University of Tehran, Tehran, Iran, and National Institutes 
of Health (NIH R01EB002450), United States.  

A. Babajani-Feremi is with the Image Analysis Lab., Radiology 
Department, Henry Ford Hospital, Detroit, MI 48202, USA. (phone: 001-
313-874-4360; fax: 001-313-874-4494; e-mail: abbasb@ rad.hfh.edu).  

J. H. Moran, is with the Neuromagnetism Lab., Neurology Department, 
Henry Ford Hospital, Detroit, MI 48202, USA. 

H. Soltanian-Zadeh is with the Image Analysis Lab., Radiology 
Department, Henry Ford Hospital, Detroit, MI 48202, USA and Control and 
Intelligent Processing Center of Excellence, Electrical and Computer 
Engineering Department, University of Tehran, Tehran 14395-515, Iran. 

 

In the integrated model proposed in [11], a two-
dimensional autoregressive model with exogenous variables 
(ARx) was introduced to describe the relationships between 
synaptic activity and homodynamic response. A static 
nonlinear function was used to describe the electro-vascular 
coupling through a flow-inducing signal. Their assumption 
about linear relationship between cerebral blood flow (CBF) 
and Blood Oxygen Level Dependent (BOLD) is not 
generally valid [15] which they correct it in [12] using the 
extended Balloon model (EBM) [16].  

We proposed an integrated MEG/fMRI model [9] where 
post synaptic potentials (PSPs) were the main link between 
the MEG and fMRI (Fig. 1). For a given external stimulus in 
this model, a linear model represents the number of active 
PSPs at each time. Several parameters of PSPs were 
introduced and modeled using random variables. Different 
aspects of PSPs were considered for constructing the 
equivalent current dipole (ECD) and the overall synaptic 
activities in MEG and fMRI parts of the model, respectively. 
The MEG signal was constructed using the resultant ECD 
and solution of the forward problem. The fMRI signal was 
constructed using the resultant overall synaptic activities as 
the input of the EBM. Using simulation studies, we showed 
that the parameters of the model can explain conditions for 
which there is a detectable fMRI signal in an area but this 
area is silent for MEG and vice versa. 

 
 
Fig. 1. Schematic Diagram for the proposed integrated MEG and fMRI 
model.  

Using our proposed extended neural mass (ENM) model, 
we introduced other integrated model [10] based on the 
physiological principles of the cortical minicolumns and 
their connections.  In this model, MEG signals are generated 
by synaptic activations of the pyramidal cells and sub-
sequential currents in minicolumns that have been 
collectively modeled as an equivalent current dipole (ECD).  
By introducing a relationship between the stimulus and the 
overall neural activity and using it as the input of the EBM, 
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we extracted the fMRI signal from the proposed extended 
neural mass model. We validated the proposed model by 
experimental results. 

The main aim of the current paper is to determine the 
parameters of our proposed model [8] using MEG and fMRI 
data recordings of cortical responses to an auditory stimulus.  
While it was impossible to record MEG and fMRI signals 
simultaneously, these data were gathered from 7 normal 
subjects using the same on/off stimulus block design. Each 
block consisted of 12 seconds of “tones on” followed by 12 
seconds of “tones off” (Fig. 2). After calculating the average 
MEG block response, we used independent component 
analysis (ICA) to extract the MEG signal of brain activity 
occurring in the primary auditory cortex.  This signal was 
used to estimate parameters of the linear filter in Block 1 of 
Fig. 1. The corresponding spatio-temporal sequence of the 
fMRI activation, measured in the primary auditory cortex, 
was used to estimate the fMRI parameters of the proposed 
model. Goodness of fit of the real data with our model 
suggests that the proposed model is well suited for 
integrated fMRI/MEG analysis of the brain activity. 

The organization of the paper is as follows. The summary 
of the proposed model in [9] is described in Section II. 
Description of the real auditory datasets and estimation of 
the parameters of the proposed model are presented in 
Section III. Conclusions are given in Section IV. 

 

 
Fig. 2. Illustration of one epoch (block) of the stimulus profile for an 
auditory excitation. Each epoch contains 12 seconds of tones on and 12 
second of tones off period. During the tones on period, 3 tone bursts were 
presented with a 15 ms rise/fall time at a rate of one per second for each of 4 
tone frequencies 500Hz, 750 Hz, 1000 Hz, and 1200 Hz. MEG data of all 
subjects contained 50 epochs, but the number of fMRI blocks was different 
for different subjects (see Table 1). 

II. PROPOSED INTEGRATED MODEL 

A. Introducing the Model 
We proposed an integrated MEG/fMRI model in [9] 

whose main features are shown in Fig. 1. External stimulus 
causes neural activities in certain areas of the brain 
(activated regions). PSPs and action potentials (APs) are two 
main indices for neural activities. Based on several previous 
experimental results, it was concluded that both MEG and 
fMRI are mainly related to the PSPs and there is no 
noticeable correlation between these techniques and the 
APs. Thus, we assumed that the PSPs are the main link 
between the MEG and fMRI signals. 

Relationship between the external stimulus and the number 
of active PSPs are shown in Block 1 of Fig. 1. We 

considered a linear system whose input is the external 
stimulus and its output is the number of active PSPs at each 
time point.  While the relationship between the number of 
active PSPs and strength of the stimulus may be nonlinear, 
we assumed the following linear model for the sake of 
simplicity. 
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where N(t) is the number of active PSPs at time point t, ak 
are coefficients of the linear system, and τaf is the delay due 
to different relay processes in the long afferent pathways. 
For the block designs, Stm(.) is the unit function and  ssN  is 
the steady state value of N(t). For the event related designs, 
Stm(.) is the Dirac delta function and 1/aNss  is the peak value 
of N(t).  

Block 2 in Fig. 1 shows the relationship between the 
MEG and fMRI signals and the different aspects of the 
PSPs. There are some differences between the EPSP 
(excitatory PSP) and IPSP (inhibitory PSP) from the MEG 
point of view. The EPSP and IPSP can cancel each other in 
the MEG signal due to their opposite polarizations. In 
addition, the spatial locations and distributions of the 
excitatory and inhibitory synapses in a neuron are different 
as considered in the proposed model. We reviewed some 
experimental results about the difference of the EPSP and 
IPSP from the fMRI point of view. Our final conclusion was 
that there is almost no difference between EPSP and IPSP in 
consuming energy and thus there is no difference between 
them from the fMRI point of view in the proposed model. 
The direction of the current dipole produced by a PSP is 
important for the MEG signal, but does not have any effects 
on the fMRI signal. The strength of a PSP is important for 
both MEG and fMRI signals. We considered the above 
principles in extracting the MEG and fMRI signals from the 
active PSPs. 

Since each active cortical area contains a huge number of 
neurons and synapses whose activities are not 
deterministically known, we considered stochastic models 
for the parameters (like direction, distribution, and strength) 
of the PSPs. A comprehensive description of the parameters 
and related probability density functions (pdf) of all 
parameters is presented in [8]. For producing MEG and 
fMRI signals for a given external stimulus, we first 
calculated the number of active PSPs (N(t) in Eq. (1)). Then, 
the equivalent current dipole (ECD) and the overall neural 
activities were calculated. The MEG signal was extracted by 
considering solution of the forward problem and the 
resultant ECD in the active areas. The calculated overall 
neural activity was given as the input to the extended 
balloon model (EBM) [16] to generate the BOLD signal.  

We considered spatial crosstalk in fMRI as shown in Fig. 
1. The spatial crosstalk means that neural activities in a 
voxel change its blood flow and that of the neighboring 
voxels. Based on the existing experimental results about it, 
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we formulated the spatial crosstalk with a Gaussian kernel 
[8]. 

B. Generating MEG and fMRI Signals by the Model  
We extracted the MEG and fMRI signals from the 

external stimulus in the proposed integrated MEG/fMRI 
model [9]. The final results are briefly explained in this 
section. For extracting the MEG signal, we derived a 
relationship between the parameters of active PSPs and the 
generated ECD in the active area. The MEG signal was 
calculated using the resultant ECD and solution of the 
forward problem. In the fMRI part of the model, we 
introduced a relationship between the strength of the active 
PSPs in an active area and the overall synaptic activities. 
The overall resultant synaptic activities were used as the 
input of the EBM for producing the BOLD output. 

Referring to Eq. (17) in  [9], the mean ECD in an active 
area is: 
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where ϕ  is a mean value related to the waveform of the 
PSPs, V  is the mean amplitude of the PSPs, β  is a mean 
value related to the parameters of dendrites, r is the ratio of 
the number of IPSPs to the number of all PSPs, and )( E

Tg σ  
and )( I

Tg σ  are related to the spatial distributions of the 
EPSPs and IPSPs, respectively.  N(t) is the number of active 
PSPs at time point t according to Eq. (1). In a specific active 
cortical area, assuming known pdfs for all random variables, 
we have: 

)(.)( tNKtQ M=                                                                   (3) 

where KM is a fixed parameter that represents the mean of all 
random variables in (2). The MEG signal is calculated using 
the ECD in (3) and the solution of the forward problem. 

)( )( tQGtB =                                                                    (4) 
where G is the lead field matrix and B(t) is the measured 
field by the MEG sensors. 

Referring to Eqs. (19) and (21) in  [9], the overall 
synaptic activities due to the external stimulus is: 
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where u is the overall synaptic activities in the active 
cortical area, um is the synaptic activity that produces the 
maximum output in the extended Balloon model, max(N) 
shows the maximum number of active PSPs in the active 
area, and N(t) represents the number of active PSPs 
according to (1). The calculated overall synaptic activity in 
(5) was used as the input of the EBM with the following 
equations: 
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where the blood flow f, the blood venous volume v, and the 
veins deoxyhemoglobin content q are three state variables 
normalized to their rest values and y is the BOLD output 
signal. The neural efficiency (ε), the signal decay ( sτ ), the 

autoregulation ( fτ ), the venous transit time ( 0τ ), the 

stiffness (α), the oxygen extraction at rest (E0), and the 
resting blood volume fraction (V0) are the physiological 
parameters of the EBM. For a 1.5 T scanner and TE = 40 
ms, parameters k1, k2, and k3 have been evaluated to be k1= 
7E0, k2 = 2, and k3 = 2E0-0.2 in [15]. We use N(t) as )(tu in 
(6) and the effect of Kf  in (5) is considered in ε. 

III. ESTIMATION OF THE MODEL PARAMETERS 

A. Auditory Task Data 
One block of the auditory on/off stimulus is shown in Fig. 

2.  The first 12 seconds consists of “tones on” followed by 
12 seconds of “tones off”. During the “tones on” period, 
half second tone bursts with a 15 ms rise/fall time are 
presented at a rate of one per second.  Three tone bursts are 
presented sequentially for each of 4 tone frequencies, in the 
following order, 500Hz, 750 Hz, 1000 Hz, and 1200 Hz.  
While it is impossible to gather MEG and fMRI data 
simultaneously, this auditory block stimulus is used for both 
MEG and fMRI studies of 7 healthy subjects (4 males and 3 
females, from 27 to 44 years old).  In addition, 3-D 
anatomical MRI data is used for co-registering fMRI and 
MEG coordinates. Specifications of the acquired MRI and 
fMRI data from the subjects are given in Table 1.  
Table 1. Specification of the MRI and fMRI datasets used for estimating the 
parameters of the proposed model. 

MRI fMRI 

Subject 
# 

Gender/ 
Age 

Resolution/ 
Voxel Size 

(mm3) 

Resolution/ 
Voxel Size 

(mm3) 

Volume 
Number 

TR(s)/ 
TE (ms) 

Number  
of 

Stimulus 
Block 

1 Female/
44 

256x256x60/ 
0.94x0.94x2.5 

64x64x14/ 
3.75x3.75x5.

0 
 

132 3/ 
40 16.5 

2 Female/
40 

256x256x60/ 
0.94x0.94x2.5 

64x64x16/ 
3.75x3.75x5.

0 
198 2/ 

30 16.5 

3 Male/ 
33 

256x256x66/ 
0.94x0.94x2.5 

64x64x16/ 
3.75x3.75x5.

0 
198 2/ 

30 16.5 

4* Female/ 
41 

256x256x62/ 
0.94x0.94x2.5 

64x64x14/ 
3.75x3.75x5.

0 
198 2/ 

30 16.5 

5* Male/ 
33 

256x256x64/ 
0.94x0.94x2.5 

64x64x16/ 
3.75x3.75x5.

0 
198 2/ 

30 16.5 

6 Male/ 
27 

256x256x154/ 
0.94x0.94x1.0 

64x64x34/ 
3.44x3.44x3.

5 
120 2/30 10 

7 Male/ 
35 

256x256x154/ 
0.94x0.94x1.0 

64x64x34/ 
3.44x3.44x3.

5 
120 2/30 10 

* Two fMRI Datasets are acquired. 



 
 

 

For the fMRI data, we use a 1.5 T GE scanner and the 
echo planner imaging (EPI) sequence with 64 by 64 data 
acquisition matrix. Auditory stimuli are presented through 
air conductance tubes to headphones to reduce external 
noise. The MEG data is gathered by a 148 channel whole 
head Neuromagnetometer (4D Neuroimaging). 
Measurements are taken inside a magnetically shielded room 
located in the Neuromagnetism Laboratory of Henry Ford 
Hospital (HFH), Detroit, Michigan, USA. 50 blocks 
(epochs) of the MEG data are acquired for all subjects, 
sampled at 508.63 Hz, and initially band-pass filtered 
between 0.1-100 Hz before disk storage. 

B. Preprocessing  
One We use statistical parametric mapping (SPM) for 

activation detection of the fMRI data. After discarding first 
few slices, we do realignment and co-registration using 
SPM5. For finding the active voxels, the stimulus is 
convolved with three basis functions (HRF, HRF time 
derivative and HRF dispersion). A cluster of voxels above a 
statistical threshold is selected for each subject, focusing on 
primary auditory area. For each of the active voxel, the 
average BOLD signal over all blocks is calculated after 
removing DC offset and linear trend.  In the next section, we 
use this average BOLD signal to estimate fMRI parameters 
in these voxels for all subjects. The detected activation of a 
representative subject co-registered to MRI is shown in Fig. 
3. 

 
Fig. 3. Illustration of the detected activation from the fMRI data of subject # 

2 co-registered to 3-D anatomical MRI data after removing single active 
voxels. 

We use MEG-Tools (http://www.megimaging.com/) for 
coregistration of the MEG data with the 3-D anatomical 
MRI data. The MEG localizations are computed in reference 
to the Cartesian coordinate system defined by a set of three 
anatomical landmarks (fiducial points): the right and left 
external meatus or pre aurical and nasion. Prior to the MEG 
scan, the head surface is digitized using laser fast track 

scanning. The head digitization points (about 3,000 points) 
are used to ensure a precise registration, when the points laid 
on the scalp surface of the MRI scan. 
 The MEG data is band-pass filtered 0.5-30 Hz before 
analysis. The heart artifact is removed from the data. Bad 
epochs (blocks) containing eye blink are discarded and the 
remaining epochs are averaged to calculate the mean epoch 
data and improve the signal to noise ratio (SNR). We use 
ICA on the mean data as the final preprocessing stage after 
discarding the nuisance channels. Both “Fast-ICA” and 
AMUSE (Algorithm for Multiple Unknown Source 
Extraction) [17] algorithms are applied on the MEG 
datasets. We get higher SNR from AMUSE compared to 
“Fast- ICA”, confirming superiority of AMUSE as reported 
in [18].  

The stimulus correlated component of ICA is called “ICA 
component” hereafter. ICA component for subject # 2 is 
illustrated in Fig. 4-a. The contour map of this component is 
shown in Fig. 4-b illustrating the existence of two ECDs in 
the left and right sides of the subject’s head corresponding 
to the activations within the primary auditory cortices. 

(a) 

 
t [s] 
(b) 

 
Fig. 4. Spatiotemporal illustration of the main ICA component of the MEG 
signal of subject # 2. (a) The ICA component correlated with the stimulus. 
(b) Contour map of this ICA component. 

C. Parameter Estimation  
After registering the MEG coordinates to the 3-D 

anatomical MRI data, the cortical model is constructed 
consisting of about 2,500 cortical locations in the subject’s 
gray matter. The concentric spherical head model is used to 
construct the forward model. We use the ICA component for 
activation detection in MEG. The correlation of this 
component with each sensor for subject # 2 is shown in the 
contour map of Fig. 4-b. The Multi-Resolution FOCUSS 
(MR-FOCUSS) [19] is used to solve the MEG inverse 
problem. The resulting activation for the ICA component of 
this subject is shown in Fig. 5. As illustrated in Figs. 3 and 
5, the fMRI and MEG detect activations for subject #2 have 
appropriate spatial correlation. Also, the spatial overlap of 
the MEG and fMRI detected activations for other subjects 
are reasonable. 



 
 

 

Considering the ICA component as the MEG signals on 
the sensors, we have: 

)7(   ( ) )(....)( 1 tICbbtB T
m= 

where IC(t) is the ICA component, (b1 … bm)T is an array 
showing correlation of m sensors with the ICA component, 
and B(t) is the MEG signals on the sensors. Inverse solution 
of Eq. (4) using MR-FOCUSS gives )(.)(ˆ tBGtQ +=  where 
G+ is the inverse kernel of G. Combining the inverse 
solution, Eq. (4), and Eq. (7), we have: 
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Comparing Eq. (3) with Eq. (8), it can be assumed that 
)()(ˆ tICtN =  and ( )T

mM bbGK ...ˆ
1

+= . We calculate the 
ICA component for all of the subjects and consider it as N(t) 
in Eq. (3). After solving the inverse problem and finding G+, 
the estimated KM in each voxel will yield the magnitude of 
the reconstructed dipole in that particular voxel. 

 
Fig. 5. MEG detected activations of subject #2 after co-registration to the 3-
D anatomical MRI data. 

After specifying )(ˆ tN as the ICA component, it is 
possible to estimate parameters of the linear filter in (1) with 
the given )(ˆ tN and the stimulus. For all subjects, we found 
that a first order linear filter generates reasonable estimation 
results. Thus, we use the following first order linear filter. 

)9(  )( )()(
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dt
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where Tp , Td , and K are parameters to be estimated. 
Considering noise, to estimate the parameters of the above 
linear filter, we have: 
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where e(t) models the physiological and instrumental noises, 
)(ˆ tN is the calculated ICA component from the MEG data, 

and h(t;θ) is the impulse response of the linear filter in Eq. 
(9) with parameters θ=( Tp , Td , K). If the noise model is 

Gaussian (e ~ N (0,Σ)), the parameters can be estimated by 
the maximum likelihood (ML) method as follows. 

);ˆ(maxargˆ θθ θ NfML =  
       )]);ˆ(log[(minarg θθ Nf−=  

       .
2

)];()(ˆ[)];()(ˆ[minarg
1 θθ

θ
tNtNtNtN T −Σ−=

−

 

where f(.) is the probability density function. Finding θ with 
ML method leads to weighted least square method with 
weight matrix Σ. Under the white noise assumption (Σ =σ²I), 
it leads to minimize the following least square function:  

∑ −=
t

tNtNE 2)];()(ˆ[)( θθ                                                   (11) 

We use the numerical minimization method proposed in 
[20] for estimating θ=( Tp , Td , K) where a quasi-Newton 
method using values of E(θ) as well as its gradient is 
employed. This method is implemented in Matlab with the 
function “pem”. The N(t) and )(ˆ tN for all subjects are 
illustrated in Fig. 6. The estimated values of θ=( Tp , Td , K) 
for all subjects are given in Table 2. Signal to noise ratio 
related to the estimation of the linear filter in MEG (SNRM) 
in this table is defined as SNRM = )(ˆ tN / )()(ˆ tNtN − . As 

illustrated in Fig. 6 and values of SNRM in Table 2, the 
MEG data of some of the subjects have low SNRM and thus 
the standard deviation (STDV) of the estimated parameters 
are a little high. We try to increase SNRM and decrease 
STDV of the estimated values using higher order linear 
filters, but it did not generate much improvement. 

 
Fig. 6. Illustration of the estimated output of the linear filter in Eq. (9) and 
real MEG signals. Top-left subplot shows the stimulus as input of Eq. (9). 
Other subplots show estimated N(t) (red plot) as output of Eq. (9) and real 
signal (blue plot) as main ICA component from MEG data.  

 For estimating the parameters related to the fMRI part of 
the model, we use estimation of θ=( Tp , Td , K) and calculate 
the estimated N(t) according to (9). Then, the estimated N(t) 
assumed as overall synaptic activities )(tu  in (5) to 
generate the estimated BOLD response in each active voxel. 
Parameters of the EBM are estimated by minimizing the 
error between the estimated and real fMRI signals. The 
measured BOLD signal can be modeled as follows. 

),0(~      ,);( Σ+= Neeugy η                                           (12) 



 
 

 

where );( ηug  is the output of the dynamical system of the 
EBM with input u  (overall synaptic activities) according to 
(6), η=( ε, sτ , fτ , 0τ , α, E0, V0) is physiological 

parameters of the EBM, and e is the Gaussian measurement 
noise with variance Σ. If the nonlinear effects of the EBM 
are small enough, then the effect of physiological noise 
could be approximated as additive Gaussian noise and e in 
(12) could model both measurement and physiological 
noises [21]. Using similar steps to derive Eq. (11), the ML 
estimation of the parameter η leads to the following least 
square estimation assuming white Gaussian noise (Σ =σ²I): 

∑ −=
t

LS tytug 2)]());(([minargˆ ηη η                              (13) 

As described in Section III.B, the active voxels for each 
subject are chosen and their mean BOLD signal over all 
blocks are calculated and assumed as y(t) in (13). Then, 
parameters of the EBM are estimated using a numerical 
minimization method. A basic question about the 
identifiability of the EBM is that if we know the system 
input u  and output y, do we have enough information to 
determine unique values for the parameters? Although 
answer to this question in general case is hard, some insight 
can be inferred in specific cases. For example, if the input is 
low enough to make the linear approximation of the model, 
then the scale factor on the input (ε) and that on the output 
(V0) have similar effects on the output. Indeed, increasing ε 
could be compensated by decreasing V0 to produce the same 
output. Thus, it is not be possible to estimate these 2 
parameters by having the input u and output y. More 
discussion about this question is found in [21]. For reducing 
the redundancy, we fix α=0.33, E0=0.34, and V0 = 0.03 (V0 = 
0.06 for subject # 6) at their physiological mean values 
according to [16] and estimate the remaining parameters η = 
(ε, sτ , fτ , 0τ ). 

For estimating the parameters of the EBM, we use 
“Simulink” toolbox and “fminsearch” function of the Matlab 
as shown in Fig. 7. First, the parameters of the linear filter in 
Eq. (9) are estimated using the MEG data and the estimated 
N(t) is considered as the overall synaptic activity ( )(tu in 
Eq. (6)). Then, the estimation process for the remaining 
parameters is started by choosing proper initial values. The 
“fminsearch” function, which uses the simplex search 
method, minimizes the sum square error between the real 
and estimated BOLD signals by iteratively changing the 
parameters of the EBM. “Simulink” is used to solve the 
nonlinear state-space equation (6) by the iterations of the 
“fminsearch” minimization.  

The estimated parameters of the EBM for all subjects are 
given in Table 2. For each subject, the value of the 
parameter in this table is the mean of the estimated 
parameter in all active voxels. The histograms of 4 estimated 
parameters of the EBM for all subjects are illustrated in Fig. 
8. We use principal component analysis (PCA) to extract the 
main component of the BOLD signal from all active voxels 

in each subject. Then, we estimate parameters of the EBM 
for this component. The estimated and the real BOLD 
signals for this PCA component of all subjects are shown in 
Fig. 9. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 7. Using “fminsearch” function and “Simulink” toolbox of Matlab for 
estimating parameters of the EBM. The parameters of the linear filter in Eq. 
(9) are estimated using MEG data and the output N(t) is given as )(tu in Eq. 
(6). The “fminsearch” function minimizes the sum square error between the 
real and estimated BOLD signals by iteratively changing the parameters of 
the EBM. “Simulink” is used to solve the nonlinear state-space equation (6). 

Subject # 6 has most BOLD contrast compared to others 
as shown in Fig. 9. When we fix V0 = 0.03 for this subject, 
we find that the estimation process becomes unstable. Stable 
estimation needs higher value for V0 according to the linear 
relationship between the BOLD contrast and V0. Although 
“fminsearch” function tries to compensate the effect of V0 by 
a large value for ε but it cannot be compensated due to the 
nonlinearity effect in the large input signal. We fix V0 = 0.06 
for this subject and get stable estimation. However, value of 
ε is still large for this subject as shown in Table 2. Subject # 
7 also has high BOLD contrast and its estimated ε has a 
large value. Therefore, the distribution of the values for ε 
over the wide range shown in Fig. 8 is related to this fact 
that we fix V0 and try to model its effect by ε. 

 
Fig. 8. Histograms of the estimated parameters (ε, sτ ,

fτ ,
0τ ) of the EBM 

for all subjects. α=0.33, E0=0.34, and V0 = 0.03 (V0 = 0.06 for subject # 6) 
were fixed at their physiological mean values. Left and right values in 
parentheses of each subplot show the mean and the standard deviation of the 
estimated parameters, respectively.  

The BOLD contrast of some subjects has low SNR as 
shown in Fig. 9 and Table 2. There are outliers in their real 
fMRI data. As “fminsearch” may find any minimum of Eq. 
(13), outliers can cause finding a local minimum instead of 
the global minimum. However, using norm one instead of 
norm two in (13) can reduce the effect of outliers. Thus, we 
repeat the estimation of the parameters using norm one. 

Calculating fMRI 
signal  

from the EBM by  
solving Eq. (6)  
using Simulink
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However, mean values of the estimated parameters of the 
active voxels do not change significantly compared to the 
results from norm two given in Table 2. 
Table 2. Estimated values of the parameters of the proposed integrated 
model using real auditory data of 7 normal subjects. The parameter Tp , Td , 
and K are related to the linear filter in Eq. (9). MEG linear filter signal to 
noise ratio (SNRM) is defined as )()(ˆ/)(ˆSNR M tNtNtN −=  where )(ˆ tN  is 

the estimate of N(t) according to (9). Values under columns ε, τs , τf , and τ0 
are the mean value of these estimated parameters from all active voxels of 
the corresponding subjects. Mean and STDV rows show the average and the 
standard deviation of the estimated parameters for all subjects, respectively. 
fMRI Signal to noise ratio (SNRf) is defined as )()(ˆ/)(ˆSNR f tytyty −=  

where )(ˆ ty  and y(t) are estimated and real BOLD signals, respectively. 
α=0.33, E0=0.34, and V0 = 0.03 (V0 = 0.06 for subject # 6) were fixed at 
their physiological mean values. 
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3 0.025 14 1 3.20 21 10.67 0.13 1.05 3.93 2.30 3.25 

42 7.87 0.17 1.40 3.65 2.70 3.15 
4 0.019 44 59 1.23 

28 10.11 0.16 1.40 4.23 2.30 3.54 

82 8.01 0.17 1.93 3.44 2.82 3.03 
5 0.020 31 72 1.40 

67 11.29 0.16 1.75 3.77 2.85 2.50 

6 0.017 3 0 1.08 56 11.51 0.34 1.35 2.27 1.63 9.39 
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M
ea

n 

0.018 33 35 10.21 0.20 1.74 3.23 2.27 

ST
D

V
 

0.004 32 34 

- -  

3.15 0.19 1.04 1.58 1.07 

- 

  
The estimated values of the parameters of the EBM 

shown in Table 2 are in agreement with other works [16, 
21]. Reasonable mean and STDV of the estimation are due 
to this fact that all datasets are from the normal subjects with 
the same stimulus. In addition, we have two series of fMRI 
datasets for subjects #4 and #5 whose estimated parameters 
are similar as shown in Table 2. Finally, Figs. 6 and 9 
illustrate the goodness of fit of the real MEG and fMRI 
datasets to the proposed integrated MEG/fMRI model. 

As the final stage, we estimate the parameter related to the 
spatial crosstalk in fMRI.  Fig. 3 illustrates the detected 
activation from the fMRI time series of subject # 2 after 
removing the single active voxels. For estimating the spatial 
crosstalk represented by ),,( zyx σσσσ =  in Eq. (2) of [8], a 

Gaussian kernel is fitted to the main cluster of the detected 
activation area.  We assume an isotropic Gaussian kernel 
with σx= σy= σz for estimating σx, σy, and σz. The hotspot of 
the cluster is assumed as the center of the Gaussian kernel. 
All neighboring voxels to the central voxel in a sphere with 

a diameter of 25 mm are considered for curve fitting. The 
estimated σ is given in Table 2. 

 
Fig. 9. Illustration of the real and the estimated BOLD signals. Red plots 
show the PCA main component extracted from the real data of all active 
voxels in each subject. This PCA component is the average of all blocks; o-
plot and error-bar show the mean and the STDV of BOLD signals, 
respectively. The estimated BOLD signals are illustrated by blue lines. 2 
series of fMRI data for subjects # 4 and #5 were used as specified by 
subscripts 1 and 2 in title of the corresponding subplots. 

IV. CONCLUSION 
In this paper, we estimate the parameters of the integrated 

MEG/fMRI model (Fig. 1) proposed in our previous work 
[8] using real data. In the proposed model, the external 
stimulus generates neural activities related to the PSPs 
which are the common link between MEG and fMRI. We 
use a first order linear filter to calculate the number of active 
PSPs as a function of the external stimulus. We summarize 
the relationship between the number of active PSPs as an 
index of neural activity and ECD that generates the MEG 
signal. Moreover, we define the relationship between the 
number of active PSPs and the overall synaptic activity as 
input of the EBM for generating the fMRI signal. We 
estimate parameters of the proposed integrated model using 
real auditory data from 7 normal subjects. We start with an 
ICA analysis of the MEG signal and show that the ICA 
component can be assumed as the number of active PSPs. 
Parameters of the first order linear filter and parameters of 
the EBM are estimated using the real data. The Goodness of 
fit of the real data to our model suggests the ability of the 
proposed model in simulating realistic datasets for integrated 
fMRI/MEG analysis. The proposed model with the 
parameters estimated from real data will be useful in 
evaluating and comparing different analysis methods of 
MEG and fMRI. It is also instrumental in characterizing the 
upcoming methods for integrated analysis of MEG and 
fMRI. 
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