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Abstract 
 

Data Modeling is an essential first step for data preparation 

in any data mining procedure. Conventional entity-relational 

(E-R) data modeling is lossy, irreproducible, and time-

consuming especially when dealing with unstructured image 

data associated with complex systems like the human brain. 

We propose a methodological framework for more objective 

E-R data modeling by eliminating the structured content-

dependent metadata associated with the unstructured data. 

The proposed method is applied to epilepsy-related image 

data and a system called the human brain image database 

system (HBIDS) is developed accordingly. Supported with 

navigation, segmentation, data fusion, and feature extraction 

modules, HBIDS provides a content-based support 

environment (C-BASE). Such an environment potentially 

provides an unlimited (ad hoc) query support with a 

reproducible and efficient database schema. Switching 

between different modalities of data, while confining the 

feature extractors within the object(s) of interest, HBIDS 

yields anatomically specific query results. The price of such 

scheme is large storage requirements and relatively high 

computational cost. Examples of navigation through 

unstructured image data and content-based retrieval are 

presented in this paper. The results show the potential of 

HBIDS in content-based data management for decision 

support systems in real life medical applications. 

 

1.  Introduction 
 

The first step in any data mining procedure is data 

preparation [1], which has to be built upon a database system. 

Entity-relational databases are the most common and well-

established type of database that offers a wide range of desired 

features. On the other hand, conventional entity-relational (E-

R) data modeling for systems as complex as the human brain 

and their multimodality unstructured data does not lead to a 

lossless, feasible, and reproducible result [2]. A lossless data 

model supports all future ad hoc queries and a feasible data 

model allows doable database implementation and data entry. 

A reproducible data model promotes inter- and intra-

institutional collaborative work. Unstructured data typically 

comprise about 85% of an organization’s data [3], e.g., audio 

and video clips, body of an email, human brain images, and 

segmented models of anatomical structures. 

Traditionally, modeling unstructured data (e.g., images) 

leads to certain structured metadata [4,5] (e.g., volume of an 

anatomical structure in the human brain) as a set of entities and 

attributes. The lossy nature of such a modeling scheme makes 

it impossible to answer questions about features that are not 

part of the database schema [6]. This impedes unrestricted 

retrieval support from arbitrary aspects of the unstructured 

data that characterizes a lossy data model. 

It is usually very difficult, if not impossible, to enumerate 

all features that one can extract from an unstructured piece of 

data. On the other hand, there is a trade-off between the 

number of attributes in a data model and its feasibility, e.g., 

more attributes imply data entry at higher cost. Therefore, even 

if one could list all features, it might not be still feasible to 

include all those features in the data model. Therefore, 

feasibility is an important limitation when dealing with 

unstructured data. 

Knowledge engineers usually design data models in 

consultation with experts of related fields. Since this is a 

subjective procedure, the data model is not theoretically 

reproducible. To reduce this limitation, several practical 

guidelines have been recommended in textbooks for E-R data 

modeling [7]. However, when modeling very complex and 

unstructured data like that of the human brain, the above 

guidelines are not effective [8]. This is due to the complexity 

of the system and diverse backgrounds of the consulting 

experts. In short, conventional E-R data modeling for complex 

systems with unstructured data presents lossyness, 

infeasibility, and high degrees of intra- and inter-subject 

variability. We have observed all these limitations in modeling 

the data associated with temporal lobe epilepsy. 

Kirlangic et al [8] have developed a database system for 

objective therapy planning and evaluation in epilepsy. They 

have implemented this system for structuring and managing 

the associated data for different treatment modalities available 

for epilepsy. The focus of their work is the 

electroencephalogram (EEG). They use quantitative EEG 

(QEEG) measures to lessen the subjectivity of the outcome of 

the EEG reading. The QEEG as well as the electrode position 

and timing comprise the neuroprofile as a structured set of 



possible quantitative measures managed in their database 

system. Barb et al [6], have studied the well established 

approaches to content management and image retrieval. They 

have concluded that most of these approaches lack the 

flexibility of sharing both explicit and tacit knowledge 

involved in the decision-making processes. They propose a 

framework using semantic methods to describe visual 

abnormalities, offering a solution for tacit knowledge 

elicitation and exchange in the medical domain. To find 

related functional neuroimaging experiments, Nielsen et al [9] 

propose a content-based image retrieval technique. Although 

frameworks and approaches proposed in the above literature 

and elsewhere [10-11] contribute a lot to the field of decision 

support systems in medicine and biomedical databases, they do 

not directly tackle the problem of unstructured image data 

modeling and content-based data management. 

In this paper, we propose a data model for temporal lobe 

epilepsy that excludes the content-dependent structured 

metadata from the process of E-R data modeling. The rationale 

for this is that the content-dependent structured metadata 

modeling can only be manifested through a countless number 

of attributes, e.g., the following features of an anatomical 

structure in the brain (i.e., hippocampus): volume, surface, 

curvature, standard deviation of curvature, average intensity, 

standard deviation of intensities, etc. On the other hand, there 

is usually a limited number of unstructured metadata 

pertaining to a piece of unstructured raw data, e.g., limited 

number of structures in the human brain. The latter is true with 

content-independent structured metadata as well, e.g., voxel-

size of an imaging study. Coupled with a method to navigate 

through unstructured data and a set of information extraction 

and fusion procedures, this scheme provides a content-based 

support environment. Through its query module, this 

environment engages appropriate feature extraction procedures 

confined within the brain’s structures of interest to retrieve 

information regarding any arbitrary aspect of the data. This 

can be indefinitely expanded and, therefore, provide an 

unlimited query support. Note that with increasing costs of 

storage and processing power, the storage of the entire raw 

data and their analyses “on-demand” becomes increasingly 

feasible. 

 

2.  Method 
 

We have coined the phrase “Content-Based Support 

Environment (C-BASE)” for systems built upon databases 

with unparseable and unstructured raw data, which support 

these features: 

1. Navigation through the raw data 

2. Segmentation of raw data into meaningful objects and 

episodes 

3. Fusion of several modalities of raw data 

Switching between different modalities of data while 

focusing the feature extractors within the object(s) of interest 

potentially yields descriptive, indicative, and distinctive 

features of the raw data. Such an environment eliminates the 

need for the modeling of the content-independent structured 

metadata, which makes the entire procedure of E-R data 

modeling more objective and robust. In a nutshell, this 

summarizes our proposed approach to the problem stated in 

the previous Section. In the following sections, details of the 

proposed content-based support environment system for 

temporal lobe epilepsy will be described. 

 

2.1. Content-based support environment for 

temporal lobe epilepsy 
 

To make the contents of the image data accessible to future 

arbitrary queries, we propose a multimodality image database, 

which manages the raw data, supported by navigational 

guidance, segmentation, data fusion (registration), and feature 

extraction modules. In our specific application, the knowledge-

based anatomical landmark localization (K-BALL) method 

provides the required navigation to browse through 

unstructured and unparseable image data [12]. Segmentation 

and registration modules also benefit from the navigational 

guidance as K-BALL provides the initial model for 

segmentation and it guides the registration process. The 

navigation feature is the most important requirement of C-

BASE. These modules and their interactions are shown in Fig. 

1 in gray. Further details about the modules presented in this 

figure can be found in our previous publication [13]. 
 

 
 

Fig. 1. Content-based support environment (C-BASE) modular 

architecture for temporal lobe epilepsy. Modules discussed in this 

paper are in gray. 

 

2.2. E-R data modeling for temporal lobe epilepsy 
 

In our application, the goal is to describe the unstructured 

raw image data so that all aspects of the data, which are of 

interest, can be queried and mined based on their content in the 

future. We distinguish between the set of metadata (
C : 

content-dependent metadata) that describes the contents of the 

raw data, and the set of metadata (
NC : content-independent 

metadata) that treats the raw data as black boxes and describes 

them regardless of their contents. Examples of the former and 

latter cases are the volume of the left hippocampus and the 

date an imaging study has been performed, respectively. We 

also distinguish between the sets of structured ( SQL ) and 



unstructured ( NSQL ) metadata. We consider any data that 

cannot be directly used in a basic SQL statement as 

unstructured, e.g., audio and video clips, body of an email, 

human brain images, and segmented models of brain 

structures. We propose to exclude the content-dependent 

structured metadata in the schema. In other words, the set of 

metadata that are included in our data model is: 
C

NSQL

NC

NSQL

NC

SQL   . Table I shows two examples of 

several levels of data and metadata dealt with in this 

application. The ones that are included in the E-R data 

modeling are in gray. This table shows that we segment and 

store anatomical structures (e.g., hippocampus) in the 

database, however, the content of the segmented model (e.g., 

average curvature) will not be included in the database as this 

piece of information is content-dependent and structured 

(
C

SQL ). One can simply imagine that such features are almost 

countless, and therefore, it is not worth including them in the 

database schema. Similar to the segmented models, the 

registration information will be part of the database schema 

since it is in 
C

NSQL . An alternative method would be to store 

all the extracted features in an all purpose attribute (APA) as 

part of a table with a one-to-many relationship to the table that 

contains the 
C

NSQL item. We do not discuss the former method 

in this paper. 
 

Table I. Examples of data and metadata levels dealt with in the 

proposed E-R data modeling. 
 

Level Example I Example II 

Data Image data, e.g., MRI 
Image Data, e.g., MRI 

and SPECT 

Metadata 
Segmented structure, 

e.g., hippocampus model 

Registration 

transformation 

Meta-

metadata 

Features of the segmented 

structure, 

e.g., average curvature, ... 

 

…   

 

2.3. Content-based retrieval 
 

When querying unparseable raw data stored in a database, 

one of the following scenarios can be followed: 

1. Calculating the quantitative measures of interest using 

stand-alone software to produce structured data. Adding 

new tables and attributes to the existing database schema 

to keep track of the calculated structured data. 

2. Integrating the feature extraction routines that calculate 

the quantitative measures of interest as functions or 

operators into the query module and make them available 

within the SQL code. 

The advantages of the first scenario are: a) It does not need 

anything but the requirements of the conventional database 

management systems; and, b) The calculated quantitative 

measures will be permanently stored in the database and can 

be retrieved quickly in the future. The disadvantages of the 

first scenario are: a) The data model of the database constantly 

changes; b) Managing such variable data model will be 

difficult, as each user may add new items to query the raw data 

from their own standpoint, which can produce an endless 

number of tables and attributes; and, c) The end user of such a 

system needs to have a high level of expertise in database 

management systems to add new tables and attributes with 

correct relationships and within the right tables, respectively. 

Note that the end users are usually experts in biological and 

medical fields with limited knowledge of database 

management systems (DBMS). In addition, as it has been 

discussed before in great detail, this is a subjective matter and 

it is almost impossible to resolve disagreements between 

different users. On the other hand, the advantages of the 

second scenario are: a) All features supported by DBMS will 

continue to be supported by this scheme (e.g., security and 

privacy at the database level) since the function can 

encapsulate values that the user does not have the privilege to 

access or modify; b) All features supported by SQL will be 

available to the end user; c) It will have the capability to offer 

a unified integrated interface for query composition module; 

and, d) There will be no need to change the data model, 

eliminating the headache of managing a database with variable 

schema. The disadvantages of the second scenario is that it 

demands higher expertise in programming and more time and 

effort in integrating programs that calculate quantitative values 

into a unified system. Note that only the developers are 

supposed to meet this requirement and not the end users. The 

first scenario is more appealing if there are only a few new 

fields to be added throughout the life expectancy of the 

database. This may imply that in this situation, the data is 

intrinsically less unstructured and less unparseable. Therefore, 

as we move towards non-conventional applications that use 

more unstructured data, e.g., brain image databases, the 

advantages of the first scenario fade out and the second 

scenario will be more appealing. 

Fig. 2 shows the scheme that we have used to implement 

the second scenario. The PL/SQL (procedural language/SQL) 

communicates with functions available in dynamic link library 

(DLL) files or PL/SQL functions when each function extracts a 

feature of interest from the raw data. PL/SQL is a procedural 

extension of the Oracle-SQL that offers language constructs 

similar to those in imperative programming languages. The 

DC_DLL function performs the deformable surface model 

segmentation (for technical details see [13]) and VOL_DLL 

calculates the volume of the segmented model. This scheme 

allows adding an unlimited number of DLL files (and 

functions) to extract any arbitrary feature from the raw data. In 

some cases, the binary images need to be passed to the DLL 

function as its parameter. Since the PL/SQL cannot pass the 

binary data, we need a mediator to retrieve the required data 

from the database and make it available to the DLL function 

through the OCI (Oracle Call Interface). When the extracted 

feature is in 
C

NSQL , we store the result back into the database 

using the PL/SQL. The above scheme allows the users to take 

advantage of the functionalities available in the DLL files in 



their SQL code.  We have also designed and implemented a 

web-based query composition interface to facilitate the access 

and retrieval of the data. 

 
Fig. 2. The design that enables the proposed system to perform 

content-based query and retrieval from within the SQL shell. 
 

3. Results 
 

The proposed system (called human brain image database 

system or HBIDS) has been designed and implemented as a 3-

tier web-based system, with an Oracle database as tier 1 

(database server), Apache server as tier 2 (web server), and 

Tomcat as tier 3 (application server). The interface is 

implemented using a java server page (JSP) and Java applet. 

We have currently designed and implemented 50 forms by 

which users can logon into the system, insert, update, delete, 

and query the data. The forms of the HBIDS interface are 

categorized into six interface categories: 1) personal, 2) 

medical, 3) image, 4) base tables, 5) query composition, and 6) 

administration tool. Primary results of this project are reported 

in [13]. Here, we only present the specific results directly 

related to the Method Section of this paper. 

 

3.1. E-R data modeling 
 

The conceptual entity-relationship diagram (E-RD) of the 

proposed database is shown in Fig. 3. The entities and 

relationships of interest to this paper are in gray. An “epileptic 

patient” is a “person.” An “epileptic patient” has “image data” 

and, normal and abnormal brain tissues or structures. “MRI” 

and “SPECT” are “image data” and “img slice” belongs to 

either a SPECT or MRI study. Normal and abnormal tissues 

may be segmented (“seg. on”) on an MRI study. “MRI” and 

“SPECT” may be registered on (“reg. on”) MRI. The “seg. on” 

and “reg. on” relationships have the method attribute as well as 

the data related to the segmented model and registration 

information, respectively. When implementing the schema, we 

created a table (IMG_DATA) allowing many image modalities 

to be stored for each patient with unique identifiers {MRN, 

Modality, DofIMG}, where MRN (Medical Record Number) 

uniquely describes an epileptic patient and, DofIMG and 

Modality refer to the date of imaging and modality of the 

image, respectively. The common attributes of each image 

modality (voxel size, resolution, etc) are kept in the 

IMG_DATA table. The latter pieces of data, DofIMG, voxel 

size, and resolution all belong to 
NC

SQL . This table breaks 

down into MRI and SPECT tables. The main reason of this 

sub-typing comes from the fact that SPECT requires attributes 

which are not applicable to MRI (e.g., Time of injection 

begins (TofI) and completion of flush (CofF), etc, which are 

all in 
NC

SQL ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 3. Conceptual entity relational diagram describing a major part 

of the multimodality image database backbone. 
 

In our implementation of the schema, the 

“NORMAL_TISSUES” table keeps track of the “normal 

tissue” entity. This table descends from the MRI table since we 

segment the structures of interest, e.g., hippocampus, on T1-

weighted MRI. The segmented model is a content-dependent 

metadata; however, since it is unstructured, we accept it as an 

entity of the schema, “NORMAL_TISSUES 
C

NSQL .” The 

same statement is true with regard to the registration 

information. Therefore, we include the registration information 

as part of the data model in the “SPECT” and “MRI” tables. 

The registration information includes the base image modality 

information from which the segmented model is supposed to 

be retrieved. The “NORMAL_TISSUES” table includes 

foreign keys from the MRI table, the structure name, and a 

flag, “LeftRight,” indicating whether the segmented structure 

belongs to the left or right hemisphere or is a shared 

component by both (e.g., corpus callosum). The flag is 



required to distinguish symmetrically placed structures in the 

brain such as the hippocampus. 

 

3.2. Navigation through unstructured data (images) 
 

The K-BALL method has been applied for hippocampus 

localization. The search areas have been determined using 

desired and undesired statistical distributions, on a training set 

consisting of six epileptic patients. The T1-weighted MR 

images are searched for landmarks of the lateral ventricles, 

hippocampus, and insular cortex. Finally, using a triangulation 

method, an initial polygon is constructed from qualified 

landmarks and stored in the database as a member of 
C

NSQL . 

 
Fig. 4. Details of a navigation example through unstructured image 

data. Examples of downloading and displaying slices containing the 

hippocampus. Cross sections of the hippocampus are also displayed. 

 

Fig. 4 shows the “behind the scene” mechanisms of 

navigating through image data in which the user is interested in 

seeing the slices containing the hippocampus in a FLAIR 

modality. Right-clicking on a thumbnail, the user can choose 

the “Enlarge Slices Containing Structure” option. The user can 

then specify which structure is of interest. Using the 

hippocampus as our example (Fig. 4), the query module looks 

for a model of the hippocampus segmented on the displayed 

image modality (i.e., FLAIR). If the model does not exist, the 

query module looks for the registration information. If the 

registration information is available as well as a segmented 

model for the hippocampus associated with the base modality, 

then the query module transfers the model to the displayed 

image space (FLAIR). If there is registration information but 

no segmented model associated with the base modality, the 

query module invokes the navigation module on the base 

modality to determine the initial model determined for the 

hippocampus. Since the intention is simply to navigate through 

image space without establishing quantitative measures, the 

query module does not invoke the deformable model to 

segment the hippocampus at this point. The initial model 

becomes available within a very short interval (i.e., 1-2 s for a 

dataset of 128 images of 256256 pixels on a PC with Pentium 

III CPU @ 800 MHz). The registration information is then 

used to transfer the model to the FLAIR image space. Note 

that we prefer to perform initialization and segmentation of the 

hippocampus on T1-weighted MRI since the anatomical 

boundaries of this structure are best presented by this 

modality. If the registration information is not available, the 

query module invokes the mutual information (registration) 

routine. As soon as the segmented model or the initial model 

becomes available in the FLAIR image space, the extent of the 

model, consisting of vertices with maximum and minimum 

locations (i.e., z-values), are determined. Using the above 

locations, the slices containing the hippocampus are retrieved 

and displayed as shown in Fig. 4 on the lower-right side. 

 

3.3. Content-based retrieval 
 

As an example of content-based retrieval, we retrieve two 

groups of patients: 1) Patients with a pre-surgical hippocampus 

ipsilateral to the operated hemisphere with volumes smaller 

than that of the other side and with successful surgery 

outcomes. 2) All patients with successful outcome who have 

had a hippocampal resection. We wish to calculate the ratio of 

the number of patients in the first group divided by that of the 

second group. This provides some insight as to the extent that 

the volume of the hippocampus is predictive of successful 

outcome. Surgeries with postoperative Engel class I outcome 

are considered successful. The above ratio partially shows the 

sensitivity of basing lateralization on hippocampal volumes. 

The “behind the scene” workflow of the above query is 

shown in Fig. 5. The volumeCalc function within PL/SQL 

checks to verify whether the segmented model exists. If the 

model is available, then the VOL_DLL is invoked and the 

model is passed to it for volume calculation. If the 

hippocampus is not segmented but is initialized, the 

initialization will be passed to DC_DLL to segment this 

structure. If neither segmentation nor initialization of this 

structure is available, K-BALL followed by DC_DLL will be 

evoked to compute the segmented model. As soon as the 

segmented model becomes available, VOL_DLL calculates the 

volume. We pass the required parameters (i.e., MRN, 

MODALITY, DOFIMG, STRUCT_NAME, LEFT_RIGHT) 

to DC_DLL and it retrieves the images and initial 

segmentation from the database. The same parameters are 

passed to INIT_DLL as well. 

We may consider a Gaussian probability density function 

(pdf) for the hippocampal volumes and compute the pdf of the 

left to right volumes ratios. Fig. 6 illustrates the pdfs of the 

ratios of the left to right volumes of the hippocampus for 

patients with successful outcomes with left (solid line) and 

right (dash line) hippocampal resections, respectively. One can 

now estimate the best decision threshold for lateralization 



purposes. This can be done by minimizing the following error 

function: 













threshold

lobectomyright

threshold
lobectomyleft

dxpdf

dxpdfthreshold

_

_)(
 

The dashdot curve in Fig. 6 shows the above error function, 

where it becomes a minimum at 

4478.0,975.0 minmin  x . 
 

 
Fig. 5. “Behind the scene” workflow of the volume query. 

 
 

 
Fig. 6. Probability density functions estimated for ratios of the left to 

right hippocampal volumes for patients with successful outcomes 

with left (solid line) and right (dash line) hippocampal resections, 

respectively. Dash-dot curve shows )(threshold . 

 

4. Conclusions 
 

We have proposed a methodological framework for 

unstructured data management by introducing the notion of 

content-dependent (
C ), content-independent (

NC ), 

structured ( SQL ), and unstructured ( NSQL ) metadata and 

their inclusion or exclusion in the process of E-R data 

modeling. Excluding 
C

SQL  from the data modeling procedure 

reduces the limitations of the conventional E-R data modeling 

for unstructured data, i.e., lossyness, infeasibility, and 

irreproducibility. Married with navigation, segmentation, 

fusion, and feature extraction methods, the proposed data 

management scheme provides a content-based support 

environment (C-BASE). This environment facilitates unlimited 

query support. Switching between different modalities of data, 

while confined within the object(s) of interest, it yields 

anatomically specific query results. All these come at the cost 

of high computation and large memory space as well as 

expertise to integrate navigation, fusion, segmentation, and 

feature extraction routines into the proposed system during the 

development phase. The HBIDS, with all the features it offers, 

can potentially lessen the need for invasive procedures (e.g., 

phase II study) that are involved in temporal lobe epilepsy 

surgery candidacy determination. 
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