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ABSTRACT 
 
Mutual information has been used in many clustering 

algorithms for measuring general dependencies between random 
data variables, but its difficulties in computing for small size 
datasets has limited its efficiency for clustering in many 
applications. A novel clustering method is proposed which 
estimates mutual information based on information potential 
computed pair-wise between data points and without any prior 
assumptions about cluster density function. The proposed 
algorithm increases the mutual information in each step in an 
agglomerative hierarchy scheme. We have shown experimentally 
that maximizing mutual information between data points and their 
class labels will lead to an efficient clustering. Experiments done 
on a variety of artificial and real datasets show the superiority of 
this algorithm, besides its low computational complexity, in 
comparison to other information based clustering methods and also 
some ordinary clustering algorithms. 
 
Index Terms— agglomerative hierarchical clustering, 
information potential, mutual information (MI), Renyi’s entropy 
 

1. INTRODUCTION 
 
Clustering is an unsupervised classification of a dataset into its 

natural groups, so that the data in a labeled group have the highest 
similarity among themselves and the highest dissimilarity with the 
data in other groups. After a successful clustering, the within 
similarity between data pairs of a single cluster is maximized and 
the between similarity of data pairs assigned to different clusters is 
minimized. The most important part of any clustering method is 
the utilized similarity measure. Different clustering algorithms are 
associated with a special definition of distance or similarity [14]. 
Most clustering algorithms, because of using the intra-cluster 
variance or Euclidean distances, can only detect data structure 
limited to the second order statistics. A useful tool to extract 
complex data structures for clustering is information theory that is 
able to extract data structures further than the second order 
statistics. However, practical difficulties in approximating data’s 
probability density function has limited its usage in clustering 
methods and increased the computational complexity. Density 
functions can be estimated by parametric or non-parametric 
methods [3]. Nonparametric methods are not limited to a special 
form or model and are more flexible than parametric methods but 
are computationally more expensive. The Parzen window 
estimator is a widely used nonparametric method for density 
estimation [9]. It was shown by Principe et al [10] that using the 

Parzen’s window estimator to compute the Renyi’s definition of 
entropy will lead to a simplified pair-wise calculation between data 
points in a dataset. 

This paper addresses an information theoretic method which 
utilizes MI as a proximity measure. MI extracts data structures 
related to higher order statistics, further than only the second order 
statistics. MI has been utilized in many methods for obtaining 
more effective clustering techniques. In a hierarchical clustering 
method presented by Kraskov et al [8], MI is computed based on 
the grouping property for the next steps of the Mutual Information 
Clustering (MIC) algorithm. Estimating MI by this method, in 
general, is not easy especially in small size datasets with a few 
number of data points which causes to suboptimal results. In 
another method proposed by Zhou et al [17], a clustering strategy 
based on minimizing MI is applied among gene clusters. A 
simulated annealing algorithm is employed to optimize a cost 
function based on MI and minimize it. Because of the small size of 
data points and the difficulty in estimating the density function, 
they employed a bootstrap technique to achieve more accurate 
estimates of MI and increase the efficiency of clustering. 

Principe et al [10] proposed a quadratic distance measure 
between probability density functions and estimated the density 
functions by Parzen window estimator. They showed that the 
quadratic divergence measure can be simplified in terms of 
Gaussian functions, computed based on the difference between 
data pairs. These kinds of quantities in analogy to physical 
particles are known as information potential. Torkkola [15] has 
presented a method for learning discriminant feature transforms 
using MI estimated between class labels and transformed features 
as a criterion.  

In order to estimate MI in the proposed algorithm, the 
quadratic divergence measure is utilized. In any step of this 
algorithm, two clusters are combined to produce one new cluster. 
Combining or dividing clusters, and in general changing cluster 
labels, will change the MI for a dataset. Therefore, the two 
combining clusters are chosen to maximally increase MI in each 
step. Once establishing the algorithm, the proximity matrix of a 
desired dataset is computed by estimating the similarity between 
all data pairs with a quantity called information datum. To reduce 
the computational complexity, the proposed algorithm starts from 
a finite number of initial clusters, which are extracted at the 
beginning by the initial clustering. The appropriate number of 
clusters in a dataset can be determined by detecting the number of 
impulsive jumps in a dendrogram.  

Experiments show that maximizing the MI, computed from the 
quadratic divergence measure between data points and their cluster 
labels, will lead to an appropriate clustering. Since MI for newly 
generated clusters at each step can be computed recursively from 



the MI of the combined clusters, this algorithm is computationally 
efficient. The main advantage of the proposed algorithm is its 
ability to detect nonlinear complex structures in a dataset. The 
detectable clusters by this method are not limited to a special 
prototype or shape. Experiments done on both artificial and real 
datasets show the superiority of this algorithm. 
 

2. ESTIMATING MUTUAL INFORMATION 
 
For presently developed information theoretic clustering 

methods based on MI, the Shannon’s definition of information 
theory has been used for estimating MI, which can also be 
represented as the Kullback-Leibler divergence measure between 
p(x, y) and p(x)p(y). However, computing MI by this method will 
encounter practical difficulties especially for small size datasets. 
This problem has greatly affected the efficiency of clustering 
results by these MI clustering algorithms. Since the purpose of 
clustering methods is not calculating MI in a dataset, but rather it is 
just for recognizing a distribution among data points which 
minimizes or maximizes a quantity of divergence, other criterions 
for divergence can be utilized [7]. Assume that a desired dataset 
has N samples, shown by a discrete random variable X in the RN 
space. Each of these data points are assigned to one of the n 
clusters; and each sample xi has a corresponding cluster label ci. 
Therefore, MI can be defined based on the quadratic divergence 
measure. 
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In the above equation, P(C, x) is the joint probability between 
cluster labels and data points and P(x) is the sample’s distribution 
function. Probability of cluster labels, P(C), is simply computed by 
dividing the number of samples in each cluster by the total number 
of samples in a desired dataset [15]. P(C, x) and P(x) can be 
estimated nonparametrically by the Parzen’s window estimator, 
resulting the following equations. 
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Where Np is the number of samples in cluster Cp and xp, k is a 
sample belonging to this cluster. P(Cp, x) is computed for all n 
clusters. The Gaussian function, G is defined as 
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By placing (2) and (3) in (1), MI can be written in terms of 
Gaussian functions. 
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Since the convolution of two Gaussian functions is also a Gaussian 
function, (5) can be simplified into the following form. 
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The information between xi and xj is defined as an information 
datum, Ii, j = G (xi-xj, 2σ2). The Total Information Potential (TIP) is 
the summation of all information datums in a dataset. The 
summation of all information datums limited to a unique cluster is 
known as the within information potential of that cluster, WIPp. 
The sum of all these WIPp is the Within Information Potential 
between samples in a dataset (WIP). By defining the information 
potential between cluster Cp and the whole dataset as 
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equation (6) can be shortened into (8) which is based on only 
WIPp, CIPp, TIP and the number of samples in each cluster. 
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3. PROPOSED HIERARCHICAL CLUSTERING 
 
Maximizing the computed MI between samples and their 

cluster labels will force cluster labels to be assigned so that there 
will be more similarity between data points in each cluster, which 
is the main idea of a clustering algorithm. But an important 
challenging question appears: how should the cluster labels alter to 
achieve this goal? 

To maximize MI, an agglomerative hierarchical clustering 
algorithm is proposed. In an agglomerative hierarchical clustering, 
clusters at each step merge to produce new clusters and this 
process is done until one cluster remains. In the proposed 
algorithm, the two merging clusters are chosen so that MI is 
increased. To reach to the maximum MI, variations of MI caused 
by combining any two clusters are computed and the pair of 
clusters which cause the maximum variation are merged. However 
merging any two clusters in a dataset and computing the variation 
in MI seems computationally expensive, but we will show that 
these variations can simply be computed based on only WIP and 
CIP of those two clusters. 

Suppose that cluster Ca is to be combined with cluster Cb to 
generate cluster Cp. Variations in MI caused by combining two 
clusters is simply computed by the following. 
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And 
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Therefore, equation (9) can be simplified into the following form. 



( ) 32
1 1

2
2 2

2
,2

N
CIPNCIPN

TIP
N

NN
xxG

N
MI abbaba

N

i

N

j
ji

a b ×+×
−+−=∆ ∑∑

= =

σ
   (12) 

Consequently, the pair of clusters which has the maximum 
increase in MI is chosen to be the best choice for merging at any 
step of the proposed clustering algorithm. 
 

4. ESTIMATING NUMBER OF CLUSTERS 
 
In many clustering applications, the actual number of clusters 

is unknown; therefore an important factor of any clustering 
algorithm is to determine the actual number of clusters or in other 
words, the clustering method that estimates the number of clusters 
more appropriately, will also generate a better clustering result. A 
better clustering is achieved when within cluster similarity, and 
between cluster dissimilarity are maximized together with the 
minimum number of clusters. Therefore different clustering 
algorithms depending on the utilized similarity and dissimilarity 
measurements give different number of clusters. 

The proposed clustering algorithm gathers data points in a 
dataset to generate larger clusters and this is done until one single 
cluster is achieved. If no clustering is applied on the data points 
before applying the proposed algorithm, then any data point is 
assumed to be an individual cluster. Consequently, the final 
clustering by the proposed method will generate the best clustering 
with high quality and stability, but with a high execution time.  On 
the other hand, if some initial clusters are produced by a suggested 
clustering method, then applying the proposed clustering algorithm 
will execute much less steps, but this might influence the 
clustering result and decrease the quality and stability. Therefore, 
there is a trade off between the computational complexity and the 
quality/stability. 

The number of initial clusters depends on the dataset. The 
number of samples and structure of the dataset specify the number 
of initial clusters. When a dataset contains line and shell prototype 
clusters, the number of initial clusters is greater than when it 
contains only mass prototype clusters. Experiments show that by 
setting the number of initial clusters to N/10, the final clustering is 
not influenced with this fact that the computational complexity is 
low. K-nearest neighbor clustering is applied on a desired dataset 
to limit the initial number of clusters [3]. For this reason P data 
points are selected randomly to be the initial seeds and then any 
data point is allocated to the nearest seed based on Euclidean 
distance. This action has a low affect on the clustering result. 

To determine the final clustering a hierarchical structure is 
supposed for the propose algorithm. The main advantage of a 
hierarchical clustering in comparison to partitional clustering is 
that a dendrogram can be drawn to find the appropriate number of 
clusters in a dataset. Unlike ordinary hierarchical algorithms which 
are based on Euclidean distance, the length in the dendrogram in 
the proposed clustering, also known as the lifetime, is the inverse 
of variations in MI. The best place to stop the hierarchical 
algorithm before ending to one cluster is when the increasing 
ascension of MI decreases. Therefore, the inverse of MI variations 
(1/∆MI) is utilized as a tool for detecting the final clustering. The 
final number of clusters is set to the number of sudden jumps in the 
dendrogram. Figure 1.a shows a dataset with four distinctive 
nonlinear mass clusters. The dendrogram for this dataset is shown 
in the Figure 1.b. The dendrogram contains four jumps, therefore, 
the final number of clusters is set to four clusters. It must be 

mentioned that any jump after a sudden detected jump is not 
considered for final clustering. 

 
Figure 1: a) A dataset containing four distinctive 
nonlinear mass clusters, b) Four jumps in the 

dendrogram defines four clusters as the final number of clusters. 
 

5. EXPERIMENT RESULTS 
 
To evaluate the efficiency of the proposed clustering 

algorithm, experiments are done on both the artificial datasets and 
the Iris dataset as a real dataset. Artificial datasets are produced 
manually to represent real data. In designing an artificial dataset, 
complex structures are used which are regularly more complicated 
than real datasets. The clustering methods that are able to cluster 
these complicated artificial datasets are also able to cluster real 
datasets. The artificial datasets are designed so that simple 
clustering algorithms like C-means, fuzzy clustering and linear 
clustering algorithms are not able to detect the actual clusters. 
Most of these artificial datasets are used by recently clustering 
algorithms to evaluate their clustering methods. The proposed 
algorithm is also compared with some other clustering algorithms 
by clustering a real dataset (Iris dataset). 

Before applying the proposed clustering on any dataset, the 
kernel size must be assigned. The main problem of most of the 
algorithms which uses Gaussian functions in the Parzen window 
estimator is that there are no theoretical guidelines to choose a 
kernel size. These methods often have high sensitivity to variations 
of σ, so that for values bigger or smaller than the correct kernel 
size, the clustering result will change generally and fail. By 
choosing a small kernel size, attention is given to the close data 
points which produce clusters covering only nearby data points. In 
this manner clusters have mass prototype or are compressed, 
without containing any outliers or correlated members. By 
choosing a larger kernel size, attention is also given to the far data 
points but it can also make the whole clustering unstable. This 
shows the complexity of choosing the kernel size and its 
dependence on the dataset structure.  

To choose the kernel size automatically, methods have been 
developed which estimate kernel size from the properties of the 
dataset and its data point's distribution. A simple method for 
choosing the kernel size is utilized in the proposed algorithm [13]. 
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      (13) 
where S is the diagonal element of the dataset’s covariance matrix, 
in the direction of one of the feature vectors. Using the manifold 
Parzen window is another suitable method for nonlinear data 
structures which chooses the kernel size for each data point locally 
[16]. Despite the mentioned methods for selecting the kernel size, 
often the actual kernel size differs with the kernel sizes presented 
by the above methods and many algorithms select the kernel size 
manually. 

a b 



5.1. Artificial Datasets 
Figures 2.a to 2.d show datasets with centralized clusters, 

which have complex nonlinear structures. To detect the clusters 
correctly, information must be extracted further than the second 
order statistics. Figure 2.d shows a dataset with extremely low 
number of samples. In contrast to many MI based clustering 
algorithms, the proposed algorithm is designed to cluster small size 
datasets too. 

 

 
Figure 2: clustering results by the proposed algorithm 

 
 

5.2. Iris Dataset 
The Iris dataset is one of the oldest databases collected by 

Anderson [1] and used by Fisher [4] to compare clustering 
algorithms. It contains 150 data points in 3 clusters, 50 data points 
in each cluster. Each cluster represents one kind of Iris flower and 
each data point has four features.  

 
Table 1: number of misclassifications in clustering the Iris dataset 

Clustering method Number of misclassifications 
Unsupervised Perceptron 19 errors 
Gokcay and Principe [5] 14 errors 

Jenssen et al [6] 15 errors 
Proposed Clustering 10 errors 

 
The proposed algorithm, when applied on the Iris dataset, 

produces different number of errors in consecutive repetitions. The 
minimum produced mistakes are equal to 4 errors while the 
maximum produced mistakes are 18 errors. This shows the high 
dependence to the initial clustering and its random-seed selecting 
procedure. By eliminating the initial clustering process at the 
beginning of the proposed algorithm and assuming each data point 
as an individual cluster, 10 errors are produced, that is better than 
recently developed information theoretic clustering methods, 
which have been tested on the Iris dataset (Table 1). 

 
6. CONCLUSION 

In this paper, a novel hierarchical clustering based on MI is 
proposed. MI is defined in terms of information potential by 
employing the quadratic divergence measure. Maximizing the MI 
between data points and their cluster labels results in an efficient 

clustering. For this reason, an agglomerative hierarchical 
clustering is designed which increases MI in each step. Variations 
of MI caused by combining any pair of clusters are computed and 
then the maximum amount is chosen to define the two clusters to 
be merged in that step. For finding the best clustering, a 
dendrogram based on the inverse of MI variations is drawn. The 
number of sudden jumps determines the final number of clusters in 
a dataset. The computational complexity of this algorithm for 
computing the proximity matrix, like other hierarchical clustering 
algorithms, is in the order of O(N2). Since the proposed algorithm 
begins from P initial clusters, the computational complexity of the 
remainder of the algorithm is in the order of O(P2). Since P<<N, 
the proposed algorithm can be considered as a very fast 
hierarchical algorithm. 
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