
 1 

Designing Matched Wavelets with the Maximum Coding Gain 

Criterion for R Peak Detection in ECG Signal  
Shirin Badizadegan

1
, Hamid Soltanian-Zadeh

1, 2
 

1
Control and Intelligent Processing Center of Excellence, Electrical and Computer Engineering Department, 

University of Tehran, Tehran 14395-515,Iran 
2
Image Analysis Laboratory, Radiology Department, Henry Ford Health System, Detroit, MI 48202, USA 

Sh.badizadegan@ece.ut.ac.ir, hszadeh@ut.ac.ir  

 

 

 

Abstract:  Wavelet-based methods have led to the 

most accurate feature extraction results, especially 

in the non-stationary signals, among the recent 

proposed methods. The methods proposed so far 

have used standard and unmatched wavelet bases 

such as Daubechies and quadratic spline. In this 

work, two new matched wavelet bases with the 

maximum gain criterion are designed and used for 

analyzing and R peak detection in the ECG 

signals.  A modified wavelet-based R peak 

detection algorithm is also presented and 

evaluated using MIT-BIH Arrhythmia database. 

Experimental results show both excellent 

performance and high speed of the proposed 

methods. 
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1 Introduction 

 
R peak detection is the first step in processing an 

ECG signal. So far, a vast number of algorithms 

have been proposed for QRS detection which can 

be categorized as follows: 1) syntactic, 2) non 

syntactic and 3) hybrid [1], [2]. The syntactic 

algorithms are time consuming and are not 

appropriate for online applications. The non-

syntactic methods are applied in the frequency 

domain, but since ECG is not a stationary signal, 

these methods are not capable of following the 

variations in its frequency components. Wavelet 

transform is a powerful tool for analyzing non-

stationary signals, such as ECG, and helps to 

improve the accuracy and reliability of ECG 

feature extraction [1]-[3]. Wavelet-based methods 

have mainly used quadratic spline and Daubechies 

wavelets which have led to excellent results and 

robustness against noise and baseline drift. 

However, many different wavelet bases with 

different characteristics have been designed and 

one can choose any of them for processing 

applications [4]-[7]. What’s more, one can directly 

design the appropriate wavelet that meets the 

required characteristics.  

In our previous work [8], we implemented the 

wavelet-based R peak detection using Quadratic 

Spline wavelets. The algorithm was similar to that 

of [1], but with more flexibility. In our next work, 

presented in [9], the idea of using matched 

wavelets for ECG feature extraction was applied 

for the first time. But the wavelet bases were 

matched to each interval of the ECG signal which 

was being analyzed at a time, so a fix wavelet base 

was not used for analyzing the ECG signals. In this 

work, two different wavelet bases matched to the 

ECG signal have been used for decomposing all 

the ECG signals and detecting their R peaks. 

Using these wavelets helps increasing the speed of 

R peak detection significantly while maintaining 

the quality of the results.  

 

 

2 Methods and Materials 

 
2.1 An Introduction to Wavelet Transform 

 

Regarding Mallat algorithm, the dyadic WT of a 

discrete-time signal (DWT) is equivalent to an 

octave filter bank and thus can be calculated as 

follows: 
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is a smoothing operator where 02
S is equal 

with the digital signal to be analyzed and 

kk gh , are the coefficients of the low pass and  

high pass  filters H(w) and G(w)  respectively.  

Let ],...,,[ 110 Nhhh  and ],...,,[ 110 Nggg  be the 

impulse response of the low pass and high pass 

filters, respectively. The following conditions 

ensure orthogonality of transform so that no 

information is lost in decomposition process and 

the filter bank is said to enjoy a perfect 

reconstruction (PR) property [4]. 
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2.2 Designing Matched Wavelet 

 
Recently, new methods have been proposed for 

designing matched wavelets aiming at optimizing 

the filtering procedure by maximizing the variance 

explained by the wavelet coefficients or by 

maximizing the compression performance of the 

filter banks [4]-[6]. Among the algorithms of this 

category, the one proposed in [5] leads to better 

results for the ECG signal classification according 

to the results presented in [4]. Also the algorithm 

proposed in [6] has local minima problem since its 

objective function may have local maxima 

different from the global maximum [4]. To 

overcome this problem and to gain more accurate 

results, the algorithm proposed in [5], is chosen to 

design the matched wavelets. 

 Let ]...[ 110  Jxxxx  be the row vector of the 

original variables. A circulant matrix from the data 

vector can be formed as : 
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where N is the length of the high-pass and low-

pass filters impulse response. 

 Assuming that the filtering is performed by 

circular convolution, computing the approximation 

coefficients ],...,[ 12/0  Jccc  and the detail 

coefficients ],...,[ 12/0  Jddd  is straightforward. 
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where down sampling c  and d   generates the 

approximation and detail coefficients c , d , 

respectively. 

The power of the low-pass and high-pass filter 

outputs can be defined as the energy divided by 

the number of the coefficients, which for the m
th 

training signal leads to 

2/J

cc
P

Tmm

m

c                                                     (6a) 

2/J

dd
P

Tmm

m

d                                                    (6b) 

The superscript m identifies the powers, 

approximations and details of the m
th 

signal. The 

overall power of the approximations and details 

for M training signals are 
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An objective function similar to the coding gain 

can be defined implying the compression 

performance of two-channel filter bank structures. 

dc

dc

PP

PP
ghF

)(5.0
),(


                                   (8) 

When the conditions in (3) are satisfied, the 

wavelet transform is orthogonal and there is no 

loss in information. So, the sum of the energy at 

the outputs of the analysis filters is equal with the 

power of the original signal, which is a constant 

value for each training signal. Thus the objective 

function can be rewritten in following form: 
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where A is the sum of the approximation and detail 

powers. It is clear that F reaches a minimum when 

2/APc  and as it increases from A/2 to A, F 

increases and tends to  . Thus, maximizing cP  

results in maximizing the objective function F. 

Moreover, the signal to noise ratio (SNR) is 

usually larger in the low-pass filter output, so 

maximizing cP  further improves the filtering 
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performance. As a result, a new objective 

function N: , can be defined as follows 
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By substituting (5a) in (10), (10) may be rewritten 

in the following form: 
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The R matrix defined in (4) is a Toeplitz matrix 

since 
TXX


is Toeplitz for any data vector. Under 

the PR (perfect reconstruction) conditions and 

assuming that  12/10 ,...,, Nrrr  are the elements of 

the first row of R, the objective function can be 

restated in the following form: 
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The vector ],...,,[ 12/10  Naaaa  contains the 

coefficients of the product 

filter )()()( 1 zHzHzP . By enforcing the 

following restriction on the frequency response of 

the product filter )()( 2 fjePfQ  : 
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The transfer function H (z) can be recovered from 

the product filter P (z) for a given a .  It would be 

sufficient to enforce the restriction in (13) only in 

the interval 5.00  f due to the periodicity of 

Q (f). So the optimization problem can be restated 

as the maximization of )(a with respect to a  

subject to the restriction defined in (13), which is a 

linear semi-infinite programming (LSIP) problem. 

Following the mathematical and computational 

steps proposed in [5] and applying a conventional 

optimization technique such as the simplex 

method, the optimal a  and as a result, the impulse 

response of the low-pass filter for the matched 

wavelet basis is obtained.  

For the sake of compatibility with the previous 

works on wavelet-based ECG feature extraction, 

MIT-BIH Arrhythmia which is a standard 

annotated ECG database is selected as the data set 

both for training and testing the proposed 

algorithm. The length of all these wavelets is set to 

N=8, the average of the length of the wavelets 

used in the related works.  The length of the data 

vectors is 180, which is half of the sampling 

frequency of the MIT-BIH Arrhythmia database.  

Moreover, to follow the recommendations of the 

AAMI (Association for the Advancement of 

Medical Instrument) the first 5 minute of each 

sample is removed. Two datasets, the first one 

containing 24 records with the even numbers and 

the second one containing 24 records with the odd 

numbers from MIT-BIH Arrhythmia database, are 

selected   as the target of matching the designed 

wavelets; W#1 and W#2, respectively. This 

approach ensures the random selection of different 

ECG records. The first 5 minute of these records is 

eliminated and the first 180-length interval with 

the R peak located at its centre is assigned to the i
th  

data vector (i=1,…,24) for each dataset.  The 

impulse response and the frequency response of 

the first and second corresponding low-pass filters, 

h#1 and h#2, are illustrated in Fig. 1and Fig. 2, 

respectively. 

 

2.3 R Peak Detection Algorithm 

 
The algorithm proposed in [1], [2] is the basis of R 

peak detection in this work. The algorithm, which 

is applied directly to the digitized signal without 

any filtering or pre-processing, contains three main 

parts: 1) windowing the ECG signals to analyze 

720 data points at a time, 2) computing the DWT 

of each interval at the scales 2 
2
 and 2 

1
, and 3) 

analyzing the wavelet coefficients for R peak 

detection. 

According to signal detection theory, if the system 

response of the detection filter matches the signal 

embedded in noise, the signal-to-noise ratio (SNR) 

is maximized, and a sharp and high peak will be 

produced at the output showing the maximum 

correlation [4]. Using the matched wavelets for 

decomposing the ECG signal, positive maximum-

negative minimum pairs are generated at the 

locations of R peaks in the scales 
12  and 

22 (Fig.3).  Thus locating these maximum-

minimum pairs leads to detection of R peaks in the 

ECG signal.  

Studying the DWT coefficients of the ECG 

signals when using matched wavelets at 

different scales and in order to decrease the 

volume of mathematical computations and 

processing, it seemed sufficient to analyze the 
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wavelet coefficients only at scales 22  and 12 , 

since the DWT at these scale seemed to be 

informative enough for analyzing the signal 

characteristics. 
The R peak detection algorithm can be divided 

into the following steps: 

Step1: The DWT of the signal is calculated at 

scales
22  and

12  . 

Step 2: All the maxima in DWT larger than a 

threshold 2.5 times larger than the rms of DWT 

coefficients at each interval at scale 
22  are 

detected. 

Step 3: In the neighboring of each maximum-

minimum pair detected at scale 
22  , a similar pair 

is detected at scale
12 . 

 
Fig.1. Impulse response and the frequency response of 

h#1, the low-pass filter of the first designed matched 

wavelet. 

 
Fig.2. Impulse response and the frequency response of 

h#2, the low-pass filter of the second designed matched 

wavelet. 

 

Step 4: Isolated peaks at scale 
12  are eliminated.  

Step 5: Redundant peaks at scale 
12  are 

eliminated.  

Step 6: The remaining pairs at scale 
12  correspond 

to the R peaks of the signal. The zero crossing 

points of these pairs are calculated and shifted 2 

points to the left to obtain the locations of the R 

peaks in the ECG signal. 

 

Fig.  3. ECG signal its DWT at scales 
12  and 

22 . The 

maximum-minimum pairs at scales 
12 and 

22  

correspond to R peaks. 

 
3 Experimental Results 

 

The MIT-BIH Arrhythmia database consists of 48 

real ECG records whose characteristic points have 

been carefully annotated. The duration of each 

record is 30 minutes which has been sampled at 

360 Hz. No pre-processing or filtering is applied 

and the signals are directly analyzed using each of 

the R peak detection algorithms. 

The evaluation process is conducted 3 times. In the 

experiments 1 and 2, the 2 designed matched 

wavelets (W#1, W#2) are used for analyzing the 

ECG records. To compare the efficiency of the 

designed wavelets with the previously used 

wavelets, the third experiment is performed using 

Quadratic Spline wavelet. The wavelet coefficients 

were analyzed at scales 
12 and

22  in the three 

experiments. 

To evaluate the accuracy of the detection 

algorithm, the location of the R peaks (which was 

the output of the algorithm) for each record were 

compared to the actual location of that record’s R 

peaks, available in the annotations assigned to that 

specific record. Table I shows the results of the 

three experiments. “FP” is the number of false 

positives (incorrectly detected) and “FN” is the 

number of false negatives (missed) R peaks. The 

total number of failed detections is the sum of FP 

and FN. 

 

4 Conclusions 

 

This work presented a new method for wavelet-

based R peak detection by using matched 

wavelets. The matched wavelets were designed 

with the aim of maximizing the coding gain of the 
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wavelet transform. The previous works required 

analyzing the wavelet coefficients at 4 different 

scales while the proposed method needs analyzing 

the coefficients at only 2 scales. The minimum 

execution time for the previous methods was about 

108 seconds while for the proposed method it was 

reduced to 26.2 seconds. So, the speed of the 

algorithm is increased considerably. The results 

show a considerable increase in the accuracy of the 

R peak detection algorithm when using matched 

wavelets instead of Quadratic Spline wavelet, 

which had led to the best results among the 

previous wavelet-based R peak detection 

algorithms.
Table I 

THE NUMBER OF FALSE POSITIVE(FP), FALSE NEGATIVE(FN) AND TOTAL FAILED 

DETECTED R PEAKS USING TWO WAVELET BASES (W#1, W#2) AND QS( QUADRATIC SPLINE 

WAVELET) FOR MIT-BIH ARRHYTHIMA DATABASE. 

Signal 
Total 

beats 
FP(QS) FP(#1) FP(#2) FN(QS) FN (#1) FN(#2) FD(#1) FD(#2) FD(#3) 

100 2273 0 0 0 0 0 0 0 0 0 

101 1865 1 4 4 2 3 4 3 7 8 

102 2187 0 0 0 3 0 0 3 0 0 

103 2084 0 0 0 0 0 0 0 0 0 

104 2230 137 38 77 57 35 74 194 73 151 

105 2572 21 12 17 26 5 34 47 17 51 

106 2027 1 1 19 100 12 49 101 13 68 

107 2137 651 18 2 486 21 10 1137 39 12 

108 1763 525 171 60 132 173 76 657 344 136 

109 2532 3 1 5 184 6 16 187 7 21 

111 2124 8 1 5 6 1 16 14 2 21 

112 2539 0 0 0 0 0 2 0 0 2 

113 1795 0 0 0 0 0 0 0 0 0 

114 1879 9 0 7 9 0 18 18 0 25 

115 1953 0 0 0 0 0 0 0 0 0 

116 2412 13 0 6 48 0 2 61 0 8 

117 1535 2 0 0 1 0 1 3 0 1 

118 2275 4 0 4 3 0 5 7 0 9 

119 1987 0 0 0 445 0 0 445 0 0 

121 1863 2 0 1 2 1 37 4 1 38 

122 2476 0 0 0 0 0 0 0 0 0 

123 1518 0 0 0 2 2 3 2 2 3 

124 1619 33 0 3 4 0 16 37 0 19 

200 2601 118 9 31 64 5 8 182 14 39 

201 1963 9 47 26 66 14 15 75 61 41 

202 2136 0 0 0 162 304 311 162 304 311 

203 2982 124 272 105 119 199 332 243 471 437 

205 2656 0 0 0 33 16 18 33 16 18 

207 1862 317 272 191 90 114 38 407 386 229 

208 2956 19 37 32 642 49 36 661 86 68 

209 3004 6 0 0 18 0 0 24 0 0 

210 2647 14 4 23 77 66 26 91 70 49 

212 2748 2 0 4 3 0 1 5 0 5 

213 3251 1 0 4 175 8 3 176 8 7 

214 2208 8 8 22 26 18 18 34 26 40 

215 2154 9 4 5 16 2 4 25 6 9 

217 2208 14 2 3 42 5 8 56 7 11 

219 2154 6 0 0 26 0 0 32 0 0 

220 2048 0 0 0 30 10 14 30 10 14 

221 2427 1 7 7 24 23 11 25 30 18 

222 2484 16 9 46 58 26 57 74 35 103 

223 2605 0 0 2 11 4 46 11 4 48 

228 2053 168 56 112 21 28 104 189 84 216 

230 2256 0 0 0 0 1 0 0 1 0 

231 1886 0 0 0 1 0 0 1 0 0 

232 1780 588 284 140 5 13 14 593 297 154 

233 3079 0 2 0 71 2 8 71 4 8 

234 2753 0 0 1 2 0 0 2 0 1 

Total 116137 2830 1259 964 3292 1166 1435 6122 2425 2399 
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Future work will use further processing of the 

wavelet coefficients in order to increase the 

efficiency and reduce the effect of noise in the 

ECG signals. 
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