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ABSTRACT 

 

Source localization in magnetoencephalography  (MEG) has 

received a lot of attention in the recent years. MEG inverse 

problem is an ill-posed problem in from of  Bn×1=Gn×mJm×1, 

where B is the vector of magnetic fields measured by the 

magnetic sensors, G is the lead field matrix, and J is the 

vector of source current in the brain. In practice, n<<m and 

J is usually a sparse vector. In this paper, we employ a 

complete reconstruction criterion to estimate the maximum 

number of active sources in the model or equivalently the 

volume of the active areas that guarantees a stable solution 

to the MEG inverse problem. Based on some prior 

information about the volume of the active areas, we then 

evaluate the stability of the solution with the employed 

model. Our approach guarantees an error upper band on the 

solution with certain number of active points. In the 

experiments, we have demonstrated the technique using 

some simulations. 

 

1. INTRODUCTION 

 

Localizing the brain neural activities is of special interest for 

research and diagnosis applications. Over the last decade, 

functional magnetic resonance imaging (fMRI) and 

magnetoencephalography (MEG) have received increased 

attention to this aim. fMRI measures the brain activities with 

poor temporal resolution (in the order of seconds) but good 

spatial resolution (in the order of millimeter). In contrast, 

MEG provides a good temporal resolution (in the order of 

milliseconds) but poor spatial resolution. In MEG, the neural 

activities of the brain are generally modeled by current 

dipoles [1, 2]. Based on prior knowledge about the brain 

anatomy and function, the locations and orientations of the 

dipoles are predetermined. However, the amplitude of each 

dipole current is unknown. Having the magnitude of the 

magnetic field at some points outside the brain, this problem 

is transformed into the inverse problem of: 

 

Bn×1=Gn×mJm×1                                (1) 

 

where B is the vector of magnetic fields measured by the 

magnetic sensors, G is the lead field matrix, and J is the 

vector of source current in the brain [2]. The goal is to 

estimate the source current J from the observed magnetic 

field B. In practice, n<<m, i.e., the number of measurements 

is far lower than the number of dipoles. Nevertheless, J is 

usually a sparse vector. For example, in the case of 

localizing the seizure activities in epileptic patients, the 

number of active sources is limited; resulting in a sparse J.  

 

Conventionally, the above inverse problem is solved by 

minimizing the following cost function: 

 

  JJJGBJ  0

2
E                      (2) 

 

The first term in the above equation is the reconstruction 

error, which measures the difference between the observed 

MEG data and the MEG signal produced by the estimated 

dipoles. To resolve the ill-posed nature of the inverse 

problem and incorporate the noise effect, a regularization 

term (the second term in equation (2)) is added to the cost 

function. Prior information about the problem may be 

incorporated in 
0

 . A stable recovery of the signal J is 

important to have a reliable localization of the brain 

activities. By stable recovery we mean that small changes in 

the observations should result in small changes in the 

recovered signal.  

 

Many practical solutions are studied in the resent years, 

namely FOCUSS [4] and LORELTA [5]. Although most of 

proposed algorithms guarantee convergence under certain 

circumstances, in the worse cases they converge to 

unexpected solutions. This observation raises this question 

that given a problem, how much accuracy we should expect.     

 

It is difficult to determine the appropriate number of active 

dipole sources in the MEG inverse problem. Conventionally, 

some dipoles are considered inside the brain and the inverse 

problem is solved by optimization techniques. The solution 

determines what dipoles are active, which specifies the 

active areas of the brain. Candes et al. [3] have proposed a 

procedure to determine whether or not a stable solution to 



this inverse problem is guaranteed. In this paper, we employ 

the proposed method in [3] for the MEG inverse problem. 

We do not provide a solution to the MEG inverse problem; 

rather we evaluate the stability of the solution. The proposed 

method is tested by conducting some simulations. 

 

The outline of this paper is as follows. In Section 2, we 

introduce the proposed evaluation technique in [3] for a 

stable recovery. In Section 3, we provide the simulations’ 

and their results. Finally we conclude and discuss in Section 

4. 

 

2. METHOD 

 

2.1. Sparse Solution Stable Recovery  

The MEG inverse problem from imperfect observations can 

be described as follows: 

 

Given a limited number of contaminated observations 

eAxy  0 , where A is an n×m matrix, y and 0x  are 

respectively n×1 and m×1 vectors, and e is an error term, 

recover the signal mx 0  whose support 

  0: 00  txtT  is assumed to have a small cardinality. A 

usually has far fewer rows than columns ( mn  ). This 

means that the number of observations is far lower than the 

number of unknown values. To recover 0x , we may consider 

the solution #x  to the l2-regularization problem 
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where   is the size of the error term e. To introduce the 

concept of stable recovery, let TA ,  nT ,...,1  be the 

Tn  submatrix obtained by extracting the columns of A 

corresponding to the indices in T. Then, define the S-

restricted isometry constant S  of A which is the smallest 

quantity such that  
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for all subsets T with ST   and coefficient sequences 

Tjc j    , . The following theorem provides a sufficient 

condition to guarantee a stable recovery [3]: 

 

Theorem: 

Let S be such that 23 43  SS  . Then for any signal 0x  

supported on 0T  with ST 0  and any perturbation e with 


2l

e , the solution 
#x  to (3) obeys 
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where the constant SC  may only depend on S4 . For 

reasonable values of S4 , SC  is well behaved; e.g. 

82.8SC  for 514 S  and 47.10SC  for 414 S . 

 

To use the above theorem for MEG inverse problem, we just 

need to replace 0.5 0.5

0 0,  ,  and  B y G A J x      in the 

above theorem. We can rewrite Equation 3 as: 

 

2
0min    subject to    

l
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Using Lagrange coefficients theory, the optimization 

problem in Equation 2 obtains: 
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Then, S is the maximum number of active dipoles in the 

MEG model.  

 

Assuming c is not 0, Equation 4 could rewrite as 

 

   
2

2

2
1 1

. . 1

S T Sl

l

G c

s t c

     




                 (8) 

 

Where 0.5

0G G    That implies  
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where λmax(
.
) and λmin(

.
) are representing maximum and 

minimum eigenvalue functions, respectively.  

 

2.2. Stable MEG Localization 

As stated before, in a typical MEG problem, the location and 

orientation of the dipoles in the model, as well as the 

location of the sensors are known from some prior 

information. This means the matrix A is already known. On 

the other hand, based on (4), S  is purely dependent on 

matrix A. Therefore, knowing A we may calculate S  for 

S=1, 2, … and determine the maximum value of S that 

satisfies the condition 23 43  SS  . This value of S is the 

maximum number of active dipoles that guarantee a stable 

signal recovery. This may be used to evaluate the model of 

dipoles as follows. The number of active dipoles S or 

equivalently the volume of the active areas is first estimated 

using some prior information [4]. Now if this value does not 

satisfy the condition 23 43  SS  , the solution is not 



guaranteed to be stable. In that case, we may re-define the 

model by decreasing the resolution and lowering the number 

of dipoles in the MEG model. This may be repeated until a 

stable recovery is guaranteed. 

Smart choice of the resolution in each step could 

guarantee an error band on the location of results.  

In conclusion, this construction is suggesting a low-

resolution to high-resolution approach to guarantee an error 

bound. In contrast to traditional FOCUSS algorithm, the 

resolution of answers in each step is determining using 

stable recovery factor in (9).  

   

3. SIMULATIONS 

 

3.1. Simulation 1: Simple Sphere Model  

In this experiment, the brain is modeled with a sphere and n 

sensors are considered around the brain and m dipoles are 

distributes uniformly inside the brain as potential sources. In 

these simulations very simple homogeny model is used to 

calculate the G matrix.  

 

Figure 1 shows the stable recovery criteria for 30 and 60 

dipoles. As we can see, in identical geometry, we the 

resolution increases form 30 pixels to 60 pixels, number of 

stable recoverable point decrease form 5 to 3. In the second 

simulation the number of dipoles is increased from 800 to 

2000 and stable recoverable point decrease form 60 to 35. 

As we can as resolution is increased, smaller activity is 

accurately detectable. The result is hold when we have 

generally small real activity area compare to number of 

dipoles. This condition is necessary to keep stable recovery 

condition valid.  

 

3.2. Simulation 2: MRI Based Model 

In this experiment, we used a realistic MRI based model for 

the brain and considered 120 sensors around the brain. The 

G matrix is calculated using MEG-Tools [6] forward 

modeling algorithm base on MRI image of 35 years old 

patient with temporal lobe epilepsy.  

 

The MEG signal is simulated using the forward modeling. 

Also measurement noise is considered to simulate artifacts. 

To recover the signal location, we use two models: the 

actual forward model that previously used for signal 

generation and simplified homogenous model that just use 

the boundary of MRI images. In both simulations we exact 

co-registration between MRI and MEG.  

 

Figure 2 shows the average localization error verses number 

of active points. As we can see, FOCUSS error increases 

dramatically when we have more than 50 active points. Also 

comparing result of two simulations, we can observe that 

complex forward model is more sensitive to high number of 

active points. Although in the small number of active points, 

complex model has a significant benefit, the gap between 

performances of two models reduce as number of active 

points increases.  

 

By selecting the resolution with respect to forward model 

and number of active points, localization error dramatically 

reduces in larger actvities.   

 

The point is when the number of active points is low, the 

initial resolution used by FOCUSS algorithm is less than 

stable recovery threshold; however, by increasing the 

activation number violate the stable recovery condition.   
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Fig. 1. Effect of number of dipoles on the stable recovery 

threshold: in identical geometry, when number of dipoles 

increase, number of recoverable point decrease. a. 

simulation using 10 sensors, b. simulation using 120 sensors.  

 

   

4. CONCLUSION AND DISCUSSION 

Using stable recovery criterion show how the accuracy of 

the result depends on prescience of activity area size 

complexity of model.  
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Fig. 2. Localization error verses number of active points. a. 

Simplified forward model and b. real complex forward 

model. 
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