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ABSTRACT 

 
We propose a 3D nonparametric, entropy-based, coupled, multi-

shape approach for the segmentation of subcortical brain structures 

in magnetic resonance images (MRI). Our method uses PCA to 

capture structures variability. Because of complex relationships of 

pose and shape of the coupled structures, we only use their shape 

and size relation. To this end, we apply separate registrations of the 

structures. For each structure, we consider a similarity transform 

using seven parameters. In addition, to generate most accurate 

results, we estimate probability density functions (pdf) iteratively. 

The proposed method minimizes an entropy-based energy function 

using quasi-Newton algorithm. To improve the results, we use 

analytical derivatives. Sample results are given for the 

segmentation of putamen, illustrating the impact of coupling on the 

accuracy of the results. 
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1. INTRODUCTION 

 
Medical image segmentation is among the most important 

problems in many medical applications such as visualization, 

surgical guidance and planning, diagnosis and quantitative 

measurement [1]. Many important structures in medical images do 

not present a clear boundary for segmentation and have variations 

between different subjects. In addition, imaging methods have 

limitations such as SNR, partial volume effects, and filed 

innhomogeneities [2]. 

These problems decrease medical image segmentation 

accuracy and make it a complicated problem. Several methods 

have been introduced in the literature to overcome these troubles. 

However, there is no general-purpose method for segmentation of 

all structures. Several methods use gradient information to segment 

structures [3, 4, 5]. Various methods use regional information such 

as intensity histogram (parametric and nonparametric, offline or 

online) or variance of an area to solve segmentation problems [6, 

7, 8]. Others combine boundary and regional information to reach 

accurate results [9]. Because of special properties of anatomical 

structures, using prior information about shapes of different 

structures is a very popular and effective method for making 

segmentation process robust [10, 11, 12]. In this type of methods, a 

registration process is essential. 

Another important property of anatomical structures is the 

relation of neighboring structures and their coupling. Features such 

as location, size, orientation, and shape can show the relation 

between different structures. Considering these relations for 

coupled structures makes the segmentation process more robust 

and accurate. A number of works have used these relations to 

improve the segmentation process [13, 14, 15]. One of the most 

important works is Tsai et al's work that uses PCA to capture 

variability of different structures for segmentation [13]. We 

introduce a new nonparametric entropy based method for 3D 

coupled multi-structure segmentation based of Tsai's et al. work.  

 

2. METHOD 

 

2.1. Registration 

 
To capture structure variability in the training datasets, registration 

is critical. Tsai et al used multi-shape alignment to capture 

structure variability [13]. In this way, variability of structures in 

their position and shape are considered together. However, we 

observed that shape and position relations of structures are too 

complex and PCA cannot sufficiently capture their variability, 

causing the segmentation process to fail. Therefore, we only 

consider shape relation between coupled structures and for pose 

variability we use independent transformation for each structure. 

To extract shape relation of coupled structures, for each 

desired structure, we align shapes of structures on a reference 

shape labeled by an expert physician. To align 3D images, we use 

similarity transform that includes a scaling, three rotation, and 

three translation parameters. The energy function used for 

minimization is the number of misaligned labels and we employ 

Amoeba optimizer to find best alignment parameters [16]. Next, 

we explain a model for shape representation. 

 

2.2. Shape Representation 



 
To represent a shape, a variety of methods can be used but the 

implicit representation of shapes introduced by Leventon is the 

most popular method [10]. In this method, a distance function is 

used for shape representation that is zero on the boundary of a 

shape and in other points is the Euclidian distance from boundary 

(negative inside, positive outside).  Nevertheless, because of the 

large sizes of 3D images (for example 256 256 128  ) and the 

way we align individual structures of different subjects, we do not 

need to use the whole image for implicit representation. For each 

of the structures, we use a rectangular area (say
x y z

N N N  ) 

that covers the desired structures in all of the aligned training 

datasets. Comparing the results shows that the results are identical 

in these two methods but less memory is needed for our proposed 

method (especially for computing principal components). 

After extraction of distance functions of m desired structures 

for n  different datasets (
k

i
 shows the distance function of the 

thk structure of the thi dataset), we subtract the mean distance 

function of each structure computed by averaging of the training 

datasets (
k ), from each of the n signed distance functions. These 

n m mean-offset functions (
k

i
 ) are used to show variability of 

different structures in the training datasets. We collect n column 

vectors of size 
x y z

m N N N   and use them to extract 

n eigenvectors of each of the m structures to show their 

variability (
k

i ). 

Suppose that we use q n eigenvectors for shape 

representation. In addition, to consider pose differences, pose 

parameters are added to each structure's model separately. Finally, 

for each shape, we have implicit descriptor in the following form. 
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For transformation of points, we use: 
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where ,T R and S are transform, rotation, and scaling matrices, 

respectively, t  is a vector of translation in 3D and c  is the center 

of rotation used for scaling and rotation 

and        x x y y z z
R R R R  θ  is multiplication of rotations 

in Cartesian coordinates. The center of transform is fixed and is 

computed using the mean of the centers of masses of the training 

datasets. 

In this manner, we have the ability to change each structure 

separately while using their shape relations for coupling. We can 

use the same parameters for all of the structures although separate 

parameters generate more realistic results. Before the 

transformation of shapes constructed using the eigenvectors, their 

sizes are set to the original image size and their centers of the mass 

are used to place the rectangular area. In the next subsection, we 

define our proposed entropy-based segmentation model. 

 

2.3. Entropy-based nonparametric segmentation model 

 
The proposed entropy-based method calssifies image voxels by 

minimizing a weighted sum of the conditional differential 

entropies. Based on the entropy of regions , 1 1k k m   , 

the objective function    
1

1 1

1

ˆ, ,
j

m

m j

j

J P H



 



       is 

used for minimization. The entropy is estimated using the general 

equation     
1ˆ ˆln ,
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 x x  [13] and we also 

have 
k

k
P






.  

In the entropy estimation,   ˆ ,
k

p I x is the approximate 

probability density function (pdf) in region k of the desired 3D 

image I . Many researchers used off-line density estimation for 

pdfs. However, we observed dissimilar behaviors in different 

datasets and concluded that using an off-line pdf is inappropriate. 

We estimate pdfs using the parzen window method with the 

Gaussian kernel as        
1

ˆ ˆ ˆ,p I K I I d


  

x x x x . In 

this equation, K is the Gaussian kernel with a sigma as tuning 

parameter [17]. Finally, we write the objective function as:  
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where P is vector of 7m q  parameters. To minimize this 

objective function, we use quasi-Newton algorithm with BFGS 

method for Hessian matrix estimation [18]. In the literature, 

methods such as steepest descent are more popular but we obtained 

more accurate results with the quasi-Newton algorithm [13]. In this 

algorithm, we need gradient with respect to the parameters. We can 

estimate gradients using numerical methods but analytical 

computation is more robust and generates more accurate results. 

To compute the gradients analytically, we use Heaviside function  
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. There are two types of parameters 

w and 
k

p and for the thi component of w and k
p

, we 

compute derivatives as follows. 
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In these equations, for simplicity we used     ˆ ˆ ,
k k

p p I x x . 

For  k k

i
p  x  and  k

i
w  x we have: 
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where 
 k

k

i

M

p





p
 is computed using derivatives of each matrix 

element. Finally, we start with initial parameters and update 

parameters with the following equations: 
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where  is a scalar step size parameter. 

 

3. RESULTS 
 

In this section, we will show some results of applying the proposed 

methods to real MRI data.  Real MRI data obtained from the 

Internet Brain Segmentation Repository (IBSR) is used for training 

and test of the system [19]. Six datasets of 256 256 128   voxels 

are used for training and two datasets of same voxel size is 

considered for test. Pixel size of datasets is not identical and this 

makes the test process more reliable. Each test dataset is registered 

using normalized mutual information (NMI) and the same 

transform is used for the alignment of the training datasets. 

 

 
Figure 1. Left and right putamen segmentation result (white with 

low opacity) over physician segmented (black).   

 

Table 1.  Dice coefficient for left and right puatmen for two 

datasets with and without coupled information. 

 
Left  

alone 

Right  

alone 

Left 

coupled 

Right  

coupled 

1 82 84 89 92 

2 72 73 84 84 

 

On the base of the structures of interest, a region of interest 

(ROI) is chosen to make the algorithm faster. In addition, pdf 

estimation of background (region out of structures) is more 

realistic and makes segmentation process more accurate. For 

initialization of structures, we registered all training datasets on the 

reference without considering any special structure. Then average 

of center of mass of structures in all of the registered training 

datasets is used as the position of center of the mass of the initial 

shape of structures. Because of different scaling on parameters, a 

normalization of parameters is needed. For example, we compute 

rotation with radian and translation by pixel. Therefore, we have to 

choose a smaller unit for rotation. Choosing units for scaling and 

principal components is very important in the same manner. In 

order to evaluate the results, we use the Dice coefficient [20] 

computed as: 
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In this equation, A and B are the sets of voxels of volumes 

to be compared. Because of their unclear edges, structures such 

putamen is hard to segment. Figure 1 shows the results of 

segmentation of the left and right putamen (with lower opacities) 

and physician labeled structures. Table 1 shows Dice coefficient 



computed for the 2 test datasets with and without considering 

coupling information. It is obvious that using coupled information 

makes segmentation more accurate. For two structures (left and 

right putamen) on a 3 GHz windows XP workstation (1 GB RAM), 

computation time is about 6 minutes. For visualization of 

structures we used 3D Slicer [21] and for registration of training 

datasets we used ITK library [22]. Other parts of the works are 

done with MATLAB workstation [23]. 

 

4. CONCLUSION 

 

We presented a new method for segmentation of brain subcortical 

structures using their shapes relation. Energy function used for 

segmentation takes into account entropy of different shapes. With 

an automatic initialization of structures and using quasi-Newton 

algorithm, local minimum of the energy function is found. 

To achieve more accurate results, probability density 

functions are calculated iteratively and gradients are computed 

analytically. Experimental results illustrate robustness and quality 

of the results generated by the proposed framework. 
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