
Diffusion Tensor Digital Phantom for Crossing Fibres Detection  
 

 

 

 

 

 
 

Abstract: White matter tractogarphy is a non-invasive 

method for reconstructing three dimensional fibre 

pathways of the brain. Several fibre tracking algorithms 

have been proposed for this purpose. To evaluate and 

compare these algorithms, it is required to use synthetic 

datasets for which the simulated pathways are known to 

the user. This paper describes an algorithm designed in 

Matlab to simulate a diffusion tensor digital phantom 

for evaluating white matter fibre tractography 

algorithms and assessing their ability to detect fibre 

crossing. This digital phantom allows quantitative 

assessment of the robustness of fibre tracking 

algorithms by varying the thickness, the angles between 

crossing fibres, the Fractional Anisotropy ( FA) value of 

synthetic paths, and background.           
 

Keywords: Diffusion Tensor Imaging (DTI), fibre 

tractography, digital phantom, simulation, 
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1 Introduction 
 

     Diffusion Tensor Imaging (DTI) is a non-

invasive tool to measure random motion of water 

molecules called diffusion or “Brownian motion”. 

In isotropic environments, the molecules move 

equally in all directions but diffusion is restricted 

in anisotropic regions. Brain white matter is an 

anisotropic tissue containing axons of neurons. 

The myelin sheet of axons restricts motion of the 

water molecules. In white matter, groups of axons 

bundle together and construct tracts. Diffusion in 

the direction parallel to these tracts is at least 

twice faster than in the perpendicular directions 

[3]. One of the most important applications of   

diffusion tensor imaging is white matter 

tractography, which non-invasively reconstructs a 

three dimensional trajectory of the white matter 

fibre pathways.  

  Diffusion properties of the neural pathways 

can be obtained by this imaging technique, where 

a symmetric 2
nd

-order tensor is assigned to each 

image voxel. The principal eigenvalue of each 

voxel’s tensor represents the direction of white 

matter fibre bundles. Measures of the diffusion 

tensor can be used to investigate brain white 

matter pathways development and help for 

neurosurgical planning. This derived information 

can be used to assess neurologic diseases like 

Multiple Sclerosis, Schizophrenia, Alzheimer, and 

Epilepsy [5]. 

In recent years, several tractography 

algorithms have been proposed to reconstruct the 
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neural pathways and to find white matter tracts 

connecting different brain regions. However, due 

to the limitations of the diffusion tensor imaging, 

e.g., the partial volume effect, some of these 

tractography algorithms are unable to detect 

correct pathways in crossing and branching fibres. 

In crossing fibres, the voxels containing multiple 

fibre bundles with different orientations, do not 

represent the main diffusion direction. A reliable 

algorithm is the one that correctly find the fibres in 

these regions.  

In order to evaluate the ability and robustness 

of different white matter tractography algorithms, 

it is recommended to use simulated DTI data, in 

which its synthetic tracts are known. 

      Basser et al. [7] generated a two dimensional 

diffusion tensor dataset containing several rings 

with different radius of curvature. Two three 

dimensional simulated dataset were generated by 

Tournier et al. [8]. One of them had a half cylinder 

shape and another one was a fibre that 

reconstructed a semicircular path. Ning Kang et 

al. [9] simulated three single-turn helical fibre 

bundles in a three dimensional volume. They also 

simulated two straight line fibre bundles which 

crossed each other at the right angle. Staempli et 

al. [10] generated an artificial data which is 

consisted of two intersecting cylinders to assess the 

ability of Advanced Fast Marching algorithm in 

tracking crossing fibres. Some virtually three 

dimensional phantoms were reconstructed in 

kissing and twisting [11] and helical [12,13] shape 

fibres. Leemans et al. [14] simulated a synthetic 

DT-MRI phantom that reconstructed the physical 

properties of a fibre pathway by the Gaussian and 

saturated model. 

    This paper describes an algorithm to simulate a 

synthetic diffusion tensor dataset as a testing 

framework for evaluating the ability of white 

matter fibre tractography algorithms to detect fibre 

crossing. Using this dataset one can assess the 

robustness of any fibre tracking algorithm by 

varying the thickness and angles between crossing 

fibres. The number of gradient directions and the 

factional anisotropy of the fibre pathways and 

surrounding regions can be varied to obtain 

different simulated diffusion weighted images. 

Different levels of noise can be added to the 

diffusion weighted images for quantitative 

evaluation of specified algorithm’s noise 

sensitivity. By generating a sample synthetic 

dataset with constant parameters, one can 

compare several tractography algorithms 

quantitatively. 

 

2 Background Theory 
 

To compute diffusion tensor, a raw data source, 

i.e., diffusion weighted images are used. These 

images are sensitive to displacement of proton 

molecules along the axis of applied diffusion 

gradient in Stejskal-Tanner Imaging sequence [1]. 

The amount of signal loss by gradient application 

is given by the Stejskal-Tanner equation [1,2]: 

 

              
DggG T  -e0SS        (1) 

 

where S0 is the signal intensity without diffusion 

weighting and S is the signal intensity with 

applying diffusion gradient, γ is the Larmor 

constant, δ is the gradient pulse width, ∆ is the 

time between gradient pulses, |G| is the strength of 

the gradient pulses, g is the applied gradient table 

in three main axis directions  and D is the diffusion 

constant. 

By introducing the b-value, the above equation 

can be written as; 
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where 
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In isotropic environment, the diffusion constant 

is scalar, but in anisotropic regions a 2
nd

-order 

tensor model represents the diffusion. This tensor 

is a 3x3 symmetric matrix, with 6 independent 

elements: 
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This tensor has three eigenvalues and three 

corresponding eigenvectors. As shown in Figure 

1(a), the tensor has equal eigenvalues in isotropic 

regions, whereas in anisotropic environment the 

eigenvalues are not equal and the eigenvector of 

the maximum eigenvalue is the principal 

eigenvector, which determines the preferred 

pathway direction in each voxel. By tracking the 

principal eigenvalues of the voxels, the fibres can 

be extracted from the diffusion weighted images.  

The anisotropic tensor shape with its eigenvalues 

is represented in Figure 1 (b). 

 



 
Figure 1:  Tensor shapes in (a) isotropic and (b) 

anisotropic regions. 

 

By providing non-diffusion image, b value, 

diffusion weighted images, and gradient table, the 

tensor elements of each voxel can be calculated 

using: 

                   )ln(
1
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where S  is  the  voxel intensity of each  

diffusion  weighted images and S0  is the voxel 

intensity of non-diffusion image. By solving 

Equation (5), six unknown tensor’s elements (i.e., 

Dxx , Dyy , Dzz , Dxy, Dxz , Dyz) are determined: 
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The eigenvectors and eigenvalues of each voxel 

can be calculated from its tensor. By applying the 

rotation operator on the eigenvector’s matrix, one 

can obtain the rotated tensor’s eigenvector around 

z axis and y axis.   

Using this rotated eigenvectors and the 

corresponding eigenvalues, its symmetric tensor 

can be calculated: 
 

                   Rotated D = VEV 1                      (8) 
 

where V is the rotated eigenvector’s and E is 

the eigenvalue’s matrix.  

Fractional Anisotropy (FA) of each voxel is 

computed from the following equation: 
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where λ1, λ2, λ3 are three tensor’s eigenvalues 

and the mean diffusivity is determined by:  
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   The FA value is normalized between zero and 

one. The FA value of isotropic regions like grey 

matter is less than 0.25 and for anisotropic regions 

like white matter is greater than 0.25 [16]. 
 

 

3 Methods 

 
For simulating DTI dataset, and generating a 

diffusion tensor digital phantom, we developed an 

algorithm and designed a graphical user interface 

(GUI) in MATLAB environment. The simulated 

diffusion weighted images can also be constructed 

from this DTI dataset.  Figure 2 shows a block 

diagram of the proposed algorithm. 
 
 

 
Figure 2:  Block diagram of the algorithm for generating 

diffusion tensor dig ital phantom 
 

 

 In the first step of the algorithm, the input 

parameters for generating the synthetic paths can 

be entered by the user.  These synthetic fibre 

bundles are multiple circular paths with fibre 

crossings at different angles. In the designed GUI, 

the user can select the number of circular paths as 

well as their thickness and radius. Tensor elements 

of fibres are obtained from real DTI dataset with 

FA value greater than 0.25. The FA value of 

background voxels can also be set less than 0.25. 

For generating each circular path, the tensor of 

the first point can be defined by the selected FA 

value. Eigenvectors and eigenvalues of this tensor 

are calculated. Eigenvectors of next voxels in the 

circular fibre can be obtained from multiplying the 

rotation matrix by the eigrenvector’s matrix. Thus, 

the rotated symmetric tensor can be computed by 

the eigenvectors and the corresponding 

eigenvalues. 

To add a crossing fibre, its location is chosen 

by selecting the number of crossing fibres, e.g.,  for 

8 crossings, the circular paths is divided to eight 

parts and the crossing fibre’s locations are 

selected. The tensor of this location is obtained, 

and the required crossing fibres are constructed 

with the ordered angle, thickness, and FA value. 

Figure 3 schematically shows a circular path with 

6 crossing fibres, where the principal direction of 

each voxel’s tensor represents by color coding in 

all three directions in space as shown in the upper 

right corner of the figure. The input parameters of 

crossing fibres, can be entered by user. In the 

represented synthetic dataset the angles are 

Choose input 

parameters 
Generate 

DTI dataset 

Add 

noise 

Reconstruct 

DTI data  

Compute 

DW images  



defined,  15,30,45,60,75,90 and then the 

crossing fibres are constructed, respectively in the 

counter clockwise direction. The suggested seed 

point for implementing tractography is also shown 

in this figure. For example, a tractography method 

may detect all crossing angles greater than 45 but 

not less than 30 .     
 

 
 

 

 

After generating the simulated DTI dataset, the 

simulated diffusion weighted images can be 

constructed. In this step, by selecting the gradient 

directions, the same number of diffusion weighted 

images is obtained from the simulated DTI dataset 

using Equation (2). Gaussian noise with different 

standard deviations [6] can be added to the 

diffusion weighted images to prepare the desired 

signal-to-noise ratio (SNR) for evaluation of the 

noise sensitivity of algorithms. Using this 

simulated diffusion weighted images and the 

corresponding gradient table, the DTI dataset can 

be reconstructed by Equation (3).  

For generating a testing DTI data with real 

background and simulated fibre pathways, tensors 

of the simulated pathways can replace the 

corresponding voxel’s tensors in real DTI data. 

Figure 4 shows the block diagram of the algorithm 

for generating this synthetic data. 

 

 
 

 

 

 
Figure 4:  Block diagram of the algorithm for generating 

synthetic DTI data with real background. 

 To implement this, first the real DTI data is 

computed using raw dataset by Equation (5), and 

in the other hand the synthetic fibres is generated. 

Then the synthetic fibre’s voxels are embedded in 

the real DTI data. Using this artificial data, one 

can prepare the simulated diffusion weighted 

images. By adding noise to these images, the noisy 

simulated DTI dataset can be generated. 

 For generating more realistic synthetic fibre, 

we extracted a tract from a human brain’s DTI 

data. This tract is thinned to one voxel thickness. 

Tensors with the selected FA value are assigned to 

its voxels. By the way for increasing the thickness 

of this fibre, a binary kernel consisted of a white 

sphere within a black background is convolved to 

this tract. The diameter of this sphere sets the 

thickness of the fibre. 

      In order to constructing a realistic crossing 

fibre, we rotated this pathway with the arbitrary 

angle and then added it to the first one. All the 

tensors in the crossing region are sum of the 

tensors of paths which crossed each other. Figure 

5 schematically shows a realistic fibre crossing. 

 

 

Figure 5: A realistic fibre crossing with 30 . 

 

 

4 Results 

 
   The designed user interface is able to 

construct the simulated DTI data and display the 

corresponding diffusion weighted images. This 

GUI prepares three types of DTI datasets: 

 

1. Real data 

2. Simulated data 

3. Real plus simulated data 

 

      Figure 6 shows the appearance of this GUI. By 

selecting each of the above dataset, the required 

parameters can be acquired from the user and then 

the dataset will be reconstructed. The diffusion 

weighted images will be shown in the image viewer 

part. These images can be saved in dicom format 

for easy conversion and loading in any fibre 

tractography and DTI analyzing software.

Embed digital phantom 
voxels in real DTI data 

Reconstruct DTI 

data  

Generate real DTI 

data  

Generate DT digital 

phantom 

Add noise 

Compute simulated 

DW images  

Choose the input 

parameters 
Choose the input 

DW raw data   

Figure 3:  A circular path with 6 crossing fibers. Colour 

coding scheme is shown in upper right of the figure. 
 



 
 

Figure 6:    A view of the developed graphical user interface 
 

 

4.1    Real data 

  By selecting the real data in GUI, a real DWI 

data with the chosen number of gradient direction is 

loaded and the DTI data is generated from this 

dataset using Equation (5). Gaussian noise with 

desired standard deviation can be added to the 

diffusion weighted images, thus the noisy DTI data 

can be reconstructed from them. Figure 7 shows real 

diffusion weighted images which are loaded in 

Image Viewer of the GUI. This real raw data is 

loaded in FSL [17] and the color coded DTI dataset 

and the principal eigenvectors are shown in Figures 

8 (a) and (b), respectively. 

 

 
 

Figure 7: Real diffusion weighted image with 6 gradient directions and without noise. 



  
 

Figure 8:   (a) View of color coded DTI data, and (b) View of principal eigenvectors in the FSLview . 
 

 
 

4.2    Simulated data 

Once the simulated data is selected, the synthetic 

circular fibre pathways can be generated by user’s 

input parameters and for any number of crossing 

fibres, the crossing’s places are determined and the 

tensor of these voxels are selected. The parameters 

of each crossing (e.g. the FA value, thickness, and 

angles) are entered and the crossing fibres can be 

generated. 

This section follows the algorithm described 

schematically in Figure 2. In this step, we have a 

synthetic DTI data and for the next stage diffusion 

weighted images are computed from this DTI data 

using Equation (2). The number of acquired 

diffusion weighted images is determined by the 

number of gradient directions. Gaussian noise can 

be added to these diffusion weighted images. Using 

diffusion weighted images and gradient direction the 

DTI data can be reconstructed by Equation (5).  

By the defined input parameters shown in Figure 

9(a), a three dimensional digital phantom can be 

constructed and the simulated diffusion weighted 

images are generated in dicom format. These dicom 

images are converted in NIFTI format and loaded in 

FSL. A view of the FSL results of colour coded DTI 

data and diffusion fitting by principal eigenvectors 

are shown respectively in Figures 9(b) and (c). As 

this result represents the eigenvectors are correctly 

matched to their paths. 

 

 
 

            
 

        Figure  9:   (a) Input parameters for creating a 3D diffusion tensor digital phantom. (b)  View of colour 

coded DTI data, and (c) View of principal eigenvectors in FSLview. 
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Figure 10:  3D simulated tracts that are embedded in real data which is shown in Figure 7.  The synthetic 

tracts can be seen in  (a) colour coded DTI data.  (b) View of principal eigenvectors in FSLview. 
 
 

 

 

 

 

 

4.3    Real plus simulated data 

By choosing real+simulated data in the designed 

GUI, the algorithm illustrated in the block diagram 

of Figure 5 is executed. The DTI data is generated 

from real diffusion weighted images and the 

simulated tensors are inserted in the corresponding 

locations in the real data. The simulated diffusion 

weighted images with their gradient table are loaded 

in FSL. The result of this part is shown in Figure 9. 

As shown in this figure, the simulated DTI  dataset 

has a real background that the artificial fibre 

pathways are embedded in it. 

Like the previous sections, noise can be added to 

the diffusion weighted data and noisy DTI dataset 

can be reconstructed. The resulting data is used for 

testing the noise sensitivity of the algorithms.  

 

 

Fibre tracking results 

We use probabilistic tractography algorithm 

[18] and fast marching algorithm [19] for 

implementing fibre tracking on this simulated data. 

As shown in figure 11(a) fast marching 

algorithm detects all the crossing fibres, whereas 

probabilistic algorithm is unable to detect the 

crossing region. Figure 11(b) illustrates that the 

tracking is cut in crossing regions and unable to 

continue the pathway. 

 

 
 

                                             
 

Figure 11: Result of fiber tracking using (a) Probabilistic tractography algorithm, (b) Fast Marching algorithm. 

a b 

b a 



5 Conclusion 
 

This proposed simulated dataset can be used 

as a quantitative testing framework for evaluating 

the robustness, noise sensitivity, and performance 

of DTI fibre tractography algorithms. Using this 

simulated dataset, we assessed how a true 

crossing can be detected in different conditions 

such as background noise, different FA value of 

fibres and background environment, crossing 

angle, and thickness. 

Using real diffusion weighted data, for the 

background of the image, the synthetic fibres are 

embedded in the real environment, thus a dataset 

with real background can be constructed.    

The resulting simulated diffusion weighted 

images are saved in a dicom format so that they 

can be used in different fibre tracking software.   

After converting the simulated raw dataset to 

NIFTI format, we tested this 3D digital phantom 

in FSL. As shown in Figure 9 (c) and Figure 10 

(b), the principal eigenvectors are correctly fitted 

to this data.  
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