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Radon Transform Orientation Estimation for 
Rotation Invariant Texture Analysis 

 

Kourosh Jafari-Khouzani and Hamid Soltanian-Zadeh, Senior Member, IEEE 

 

Abstract--This paper presents a new approach to rotation invariant texture classification. The proposed approach 
benefits from the fact that most of the texture patterns either have directionality (anisotropic textures) or are not with a 
specific direction (isotropic textures). The wavelet energy features of the directional textures change significantly when 
the image is rotated. However, for the isotropic images, the wavelet features are not sensitive to rotation. Therefore, for 
the directional textures it is essential to calculate the wavelet features along a specific direction. In the proposed approach, 
the Radon transform is first employed to detect the principal direction of the texture. Then, the texture is rotated to place 
its principal direction at 0° . A wavelet transform is applied to the rotated image to extract texture features. This approach 
provides a features space with small intra-class variability and therefore good separation between different classes. The 
performance of the method is evaluated using three texture sets. Experimental results show the superiority of the 
proposed approach compared with some existing methods. 

 
Index Terms--Texture classification, Radon transform, wavelet transform, rotation invariance . 

I. INTRODUCTION 

Texture analysis plays an important role in computer vision and image processing. The 
applications include medical imaging, remote sensing, content-based image retrieval, and 
document segmentation. Translation, rotation, and scale invariant texture analysis methods have 
been of particular interest [1]. In this paper, we are concerned with the rotation invariant texture 
classification problem. 

So far, many attempts have been directed towards rotation invariant texture analysis [1], 
including polarogram [2], circular symmetric autoregressive random field (CSAR) model [3], 
and rotation invariant SAR model [4]. Pietikainen, et al. [5] present a set of features to describe 
the texture, most of which locally invariant to rotation. Ojala, et al. [6] employ binary patterns 
defined on circularly symmetric neighborhood sets. In all of these methods, a neighborhood is 
utilized, which only captures the local intensity variations of the texture and overlooks the global 
information. 

Circular-Mellin features [7] are created by decomposing the image into a combination of 
harmonic components in its polar form and are shown to be rotation and scale invariant. Zernike 
moments [8] are used to create rotation, scale and illumination invariant color texture 
characterization. Greenspan, et al. [9] use the steerable pyramid model to get rotation invariance.  
Cohen, et al. [10] model texture as Gaussian Markov random field and use the maximum 
likelihood technique to estimate the coefficients and rotation angles. Chen and Kundu [11] use 
multichannel subband decomposition and a hidden Markov model to solve the problem. 

Multiresolution approaches such as Gabor filters, wavelet transforms, and wavelet frames have 
been widely studied and used for texture characterization. Wavelets provide spatial/frequency 
information of textures, which are useful for classification and segmentation. However, wavelet 
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transform is not translation and rotation invariant. Several attempts have been made towards 
using the wavelet transform for rotation invariant texture analysis. Some of the proposed 
methods use a preprocessing step to make the analysis invariant to rotation or use rotated 
wavelets and exploit the steerability to calculate the wavelet transform for different orientations 
to achieve invariant features. Pun and Lee [12] apply log-polar transform and then use an 
invariant wavelet transform to create rotation and scale invariant features. Manthalkar, et al. [13] 
combine LH and HL channels of the wavelet decomposition to get rotation invariant features. 
Charalampidis and Kasparis [14] use wavelet-based roughness features and steerability to get 
rotation invariance. 

Haley and Manjunath [15] employ a complete space-frequency model using Gabor wavelets to 
achieve a rotation- invariant texture classification. Wu and Wei [16] create 1-D signals by 
sampling the images along a spiral path and use a quadrature mirror filter bank to decompose the 
signals into subbands and calculate several features for each subband. Do and Vetterli [17] use a 
steerable wavelet-domain hidden Markov model and a maximum likelihood estimator to find the 
model parameters. Campisi, et al. [18] model the texture as the output of a linear system driven 
by a binary image. The features extracted from the autocorrelation function of the binary image 
are used for classification of the texture. In a previous paper [19] we apply translation invariant 
wavelet transform on Radon transform of the image to create rotation invariant features. 

In this paper, the wavelet features are calculated along an estimated orientation. This is similar 
to manual texture analysis when we rotate the unknown texture to match one of the known 
textures. There are techniques in the literature to estimate the orientation of the image including 
methods based on image gradients [20], angular distribution of signal power in the Fourier 
domain [21],[22] and signal autocorrelation structure [20]. Due to the inherent properties of the 
Radon transform, it is a useful tool to capture the directional information of the images. Radon 
transform has been widely used in image analysis. Magli, et al. [23] use Radon transform and 1-
D continuous wavelet transform to detect linear patterns in the aerial images. Warrick and 
Delaney [24] use a localized Radon transform with a wavelet filter to accentuate the linear and 
chirp- like features in SAR images. Leavers [25] uses the Radon transform to generate a 
taxonomy of shape for the characterization of abrasive powder particles. Do and Vetterli [26] use 
ridgelet transform, which is a combination of finite Radon transform and 1-D discrete wavelet 
transform, to approximate and denoise the images with straight edges. Ridgelet transform is also 
used to implement curvelet decomposition, which is used for image denoising [27]. 

The proposed technique employs the Radon transform to capture the directional information 
and adjust the orientation of the texture for feature extraction. Analyzing textures along their 
principal directions allows creation of features with smaller intra-class variability, thus allowing 
higher separability. The outline of the paper is as follows: In Section II, we briefly review the 
Radon transform and its properties in finding the direction of the texture. In Section III, we 
present our rotation invariant texture classification approach. Experimental results are presented 
in Section IV and conclusions are given in Section V.  

 

II. RADON TRANSFORM ORIENTATION ESTIMATION 

Radon transform is the fundamental tool used in the proposed approach. In this section, we 
briefly review this transform and its application in estimating texture direction. 
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A. Radon Transform 
The Radon transform of a 2-D function ( )yxf ,  is defined as: 

( ) ( )[ ] ( ) ( )dxdyyxryxfyxfrR  sincos,,, ∫ ∫
∞

∞−

∞

∞−

−−= θθδθ                              (1) 

where r is the perpendicular distance of a line from the origin and θ  is the angle between the line 
and the y-axis (see Fig. 1). According to the Fourier slice theorem, this transformation is 
invertible and the 1-D Fourier transforms of the Radon transform along r are the 1-D radial 
samples of the 2-D Fourier transform of ( )yxf ,  at the corresponding angles [28] (see Fig. 1). 
 

 

 

 

 

 

 

 

B. Texture Orientation 
Wavelet transform has been widely used for texture classification in the literature. However, it 

is not rotation invariant. The reason being is that textures have different frequency components 
along different orientations. Ordinary wavelet transform captures the variations along specific 
directions (namely horizontal, vertical, and diagonal), due to the separability of the wavelet basis 
functions. Fig. 2 shows a directional (anisotropic) texture sample from Brodatz album (D53) in 
two different orientations and their Fourier transforms. The Fourier transform rotates as the 
image rotates. As shown, the Fourier transform changes significantly when the image is rotated. 
However, some textures have no specific direction (isotropic textures). This means the frequency 
components of the texture do not change significantly at different orientations. In other words, its 
Fourier transform is almost circularly symmetric. Therefore, the wavelet features are 
approximately invariant to rotation. 

Fig. 3 shows an isotropic texture sample from Brodatz album (D66) in two different 
orientations and their Fourier transforms. As shown, the Fourier transform does not significantly 
change when the image is rotated. Fig. 4 shows the wavelet energy features (mean square of 
wavelet coefficients in each subband) for textures  D53 and D66 at orientations 0° to 160° with 
20° increments. The energy features are calculated from the wavelet coefficients produced by 
four levels of ordinary wavelet decomposition (therfore creating 13 subbands) using Daubechies 
wavelet of length 2 (db2). The features are numbered from 1 to 13 with smaller numbers 

(a)                                                              (b) 
Fig. 1. (a) Radon transform of the image. (b) 1-D Fourier transforms of 

the projections construct the 2-D Fourier transform of the image. 
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corresponding to lower frequency subbands. Feature 1 is divided by 10 in order to be shown with 
the other features in the figure. Comparing Figs. 4(a) and 4(b) we observe that the wavelet 
features of the anisotropic texture (D53 in Fig. 4(a)) have larger variations compared with the 
isotropic texture (D66 in Fig. 4(b)) when the orientation of the texture changes. 

 

  
 

 

 

 
Fig. 2. A directional texture (D53) in two different orientations and their Fourier transforms. 

Note that Fourier transform changes significantly when the image is rotated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

 

 
Fig. 3. An isotropic texture (D66) in two different orientations and their Fourier transforms. 
Note that the frequency components of the texture are not significantly different at different 

orientations. In other words, its Fourier transform is almost circularly symmetric. 
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This motivates us to find a principal direction for each texture and calculate the wavelet 
features along this direction to achieve rotation invariance. The basic tool we propose is the 
Radon transform. The Radon transform can be used to detect linear trends in images. Texture 
principal direction can be roughly defined as the direction along which there are more straight 
lines. The Radon transform along this direction usually has larger variations. Therefore, the 
variance of the projection at this direction is locally maximum.  

Fig. 5 (a) and (b) show an anisotropic (directional) texture and the variance of the projections 
along different orientations. A disk shape area from the middle of the  image has been selected 
before calculating the Radon transform to make the method isotropic. As shown, the variance of 
the projections has two local maxima at 45° and 135° (with vertical direction at 0°). The local 
maximum at 45° is narrower compared with the local maximum at 135°, because there are more 
straight lines along 45°.  Thus, the derivative1 of the variance changes more rapidly at 45° (see 
Fig. 5(c)). To distinguish between these two local maxima, we may calculate the second 
derivative of the variance, which has its minimum at 45°. This is depicted in Fig. 5(d). 

This technique may accurately find the texture direction for structural textures like the one 
shown in Fig. 5. Furthermore, since taking the derivative removes the low frequency components 
of the variance, this method is robust to illumination changes across the image. This method has 
an advantage over techniques that use the contributions of all frequencies in the Fourier domain 
[21],[22]. In practice, the angular energy distribution may change significantly in a texture. 
Therefore, it is not always reliable to find the dominant orientation using the contributions of all 
frequencies. Fig. 6 shows this using two samples of texture D105 from Bordatz album at 
different orientations (20° and 60°) along with the variances of projections and their second 
derivatives. As shown, although the angular energy distributions are different, the estimations 
based on the second derivative are accurate. 

                                                 
1 In this paper, the derivative of a signal sequence is estimated by the difference of successive values. 

0
50

100
150

200
250
300

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Feature Number

W
av

el
et

 F
ea

tu
re

 (a) 

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Feature Number

W
av

el
et

 F
ea

tu
re

 
(b) 

Fig. 4. Wavelet energy features for two different textures at orientations from 0° to 160° with 20° 
increments. (a) D53 which is a directional texture, and (b) D66 which is an isotropic texture. Note that, 
the wavelet features of the directional texture has larger variations compared with the isotropic texture. 
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(d) 

Fig. 5. (a) A directional texture rotated at 45°, (b) the variance of projections at different angles, (c) first 
derivative of (b), (d) second derivative of (b). Note that the variance of the projections has two local 

maxima at 45° and 135° (with vertical direction at 0°). The local maximum at 45° is narrower compared 
with the local maximum at 135°, because there are more straight lines along 45°. 
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(f) 

Fig. 6. A directional texture with principal directions of (a) 20° and (b) 60°. (c), (d) the variances of the 
projections. (e), (f) the second derivatives of the variances. As shown, although the angular energy 

distributions are different, the estimations based on the second derivative are accurate. 
 

III. PROPOSED METHOD 

Fig. 7 shows a block diagram of the proposed method. As shown, the principal direction of the 
image is first estimated from the Radon transform of a disk shape area of the image. The image 
is then rotated to move the principal direction to 0°. A wavelet transform is employed to extract 
texture features. The image is finally classified using a k-NN classifier. In the following, these 
steps are explained. 

 

 

 

 

 

 

 

A. Orientation Adjustment 
To estimate the orientation of the texture, a disk shape area is selected in the center of the 

image. The Radon transform is calculated for angles between 0° and 180°. Based on the theory 
presented in Section II, the orientation of the texture is estimated as follows. 











=

2

22

minarg
θ
σ

α θ

θ d
d

                                                               (2) 

where ( )( )22 ,1 ∑ −=
r

rRN θθ µθσ is the variance of the projection at θ , ( )∑=
r

rRN θµθ ,1 , and N 

is the number of samples in each projection. Then we rotate the image by α−  to adjust the 
orientation of the texture. 

Fig. 7. Block diagram of the proposed rotation invariant texture classification technique. 
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B. Wavelet Feature Extraction 
By applying the wavelet transform to the rotated image, a number of subbands are produced. 

For each subband sI , we calculate the following features: 

∑∑
= =×

=
M

i

N

j

s
jiI

NM
e

1 1
,1

1
                                                             (3) 

( ) 













×
−

= ∑∑
= = anorm

log
anormlog

1 ,

1 1

,

2

s
jiM

i

N

j

s
ji II

NM
e                                               (4) 

where ∑= ji
s

jiI, ,anorm , M and N are the dimensions of each subband, and s represents the 

subband number. The features e1 and e2 are similar to the energy and entropy features with the 
difference of using absolute values instead of squared values. The energy and entropy features 
have been shown to be useful for texture analysis [11],[12].  

Note that the wavelet transform is calculated for a disk shape area of the image. The sharp 
edges of its circular boundary affect the wavelet features. But since this is the case for all the 
images, it has equal effect for all the texture features in each class. Therefore, it does not have 
significant impact on the classification. 

C. Classification 
We use the k-nearest neighbors (k-NN) classifier with Euclidean distance to classify each 

image into an appropriate class. Since different features have different ranges of possible values, 
the classification may be based primarily on the features with wider ranges of values. For this 
reason, before classification, we normalize each feature using the following formula: 

j

jji
ji

f
f

σ

µ−
= ,

,
ˆ                                                                    (5) 

where jif ,  is the jth feature of the ith image, and jµ  and jσ  are the mean and variance of the 
feature j in the training set.  

On the other hand, the features may not have the same level of significance for classification. 
Therefore, we apply a feature selection technique to choose the best combination of features and 
improve the classification. In this paper, we apply weights to the normalized features. The 
weight for each feature is calculated as the correct classification rate in the training set (a number 
between 0 and 1) using only that feature and the leaving-one-out technique [29]. This is based on 
the sense that the features with higher discrimination power deserve higher weights, which is 
similar to matched filtering. Although this method may not provide an optimal weight vector but 
is sensible and straightforward to implement. 

D. Robustness to Additive Noise 
The proposed method to estimate the principal direction is robust to additive noise. It has been 

shown that signal to noise ratio increases after applying the Radon transform [19]. Suppose the 
image is denoted by ( ) ( ) ( )yxyxfyxf ,,,ˆ η+=  where ( )yx,η  is white noise with zero mean and 



 9 

variance 2
nσ . Let ( ) ( )[ ]yxfrRpr ,ˆ,ˆ θ= , then nrsrr ppp ,, ˆˆˆ +=  where srp ,ˆ  and nrp ,ˆ  are 

respectively the Radon transforms of the signal and noise at orientation θ . Thus: 

( ) ( ) ( ) ( )nrsrnrsrr ppppp ,,,, ,cov2varvarˆvar ++=
                                (6) 

( )[ ] ( )[ ] ( )[ ] ( )[ ]nrsrnrsrr ppEpEpEpE ,,,, ,cov2varvarˆvar ++=
                        (7) 

According to the formulas derived in [19]: 

( )[ ]
2

222
, 23

8
2

var 





−+= µ
π

µσ
π R

R
R

sr
N

N
N

pE
                                (8)

 

( )[ ] 2
, 2

var n
R

nr
N

pE σ
π

≈
                                                 (9)

 

where µ  and 2σ  are mean and variance of signal ( )yxf ,  and RN  is the radius of the image disk area 
in terms of pixels.  

Usually 2
3
8 222

nRR NN σπµ >>  and if we assume the additive white noise and image are 

uncorrelated, the term ( )[ ]nrsr ppE ,, ,cov2  is negligible compared with ( )[ ]srpE ,var . Therefore, 

the difference of ( )[ ] ( )[ ]srr pEpE ,varˆvar −  is small compared with ( )[ ]srpE ,var . This shows that 
the additive white noise has a small effect on the variance of projection and therefore the 
estimation of the principal texture direction, i.e., the estimation is robust to additive white noise. 
Fig. 8 shows the variances of the projections of a sample texture (D06) before and after adding 
zero mean white Gaussian noise with the signal to noise ratio (SNR) of 0db. As shown, noise has 
little effect on the variances (changes the variances on the order of 1% while preserving the 
overall shape of the signal).  
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Fig. 8. The variances of the projections before and after white Gaussian 
noise addition with SNR=0db. As shown, noise has little effect on the 

variances (changes the variances on the order of 1% while preserving the 
overall shape of the signal). 
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E. Fast Technique for Orientation Estimation 
Using the Fourier slice theorem, there is an alternative method to determine the texture 

principal direction. According to this theorem, the 1-D Fourier transform of the projection of 
( )yxf ,  at θ  is equal to the 1-D radial samples of the 2-D Fourier transform of ( )yxf ,  at the 

corresponding angle. On the other hand, the signal energy is the same in the time and frequency 
domains according to the Parseval’s theorem: 

( ) ( )∫∫
∞

∞−

∞

∞−

= dssFdrrR 22 , θθ                                                     (10) 

where ( )sFθ  is the 1-D radial sample of the Fourier transform of ( )yxf , . Thus, 

( )( ) ( ) ( ) cdssFdrrRdrrR +=−=−= ∫∫∫
∞

∞−

∞

∞−

∞

∞−

22222 ,, θθθθ µθµθσ                  (11) 

where c is independent of θ  because θµ  is independent of θ . Therefore, 

( ) 







=










= ∫

∞

∞−

dssF
d
d

d
d 2

2

2

2

22

minargminarg θ
θ

θ

θ θθ
σ

α                                          (12) 

Hence, we may calculate the Fourier transform of the image and use its 1-D radial samples to 
calculate 2

θσ . However, since in practice we have discrete Fourier transform and most of the 
energy is located around the origin in the frequency domain, more samples are needed around the 
origin to have accurate calculations. Zero padding may be used to generate more samples of the 
Fourier transform. In addition, fast algorithms that calculate the polar Fourier transform of an 
image of size N×N in O(N2logN) [30] can be used. 

 

IV. EXPERIMENTAL RESULTS 

We demonstrate the efficiency of the proposed approach using three data sets. Data set 1 
consists of 25 texture images of size 512×512 from Brodatz album [31] used in [12]. We divided 
each texture image into four 256×256 nonoverlapping regions. Then, we extracted one 128×128 
subimage from the middle of each region to create a training set of 100 (25×4) images. To create 
the test set, each 256×256 region was rotated at angles 10º to 160º with 10º increments and from 
each rotated image one 128×128 subimage was selected (the subimages were selected off center 
to make minimum overlap for different angles). With this approach, we created a total number of 
1600 (25×4×16) for the testing set (approximately 6% for training and 94% for testing). 

In the experiments, to estimate the principal direction we calculate the Radon transform for 
angles 0° to 180° with 0.5° increments. Fig. 9 shows the error mean and square root of mean 
square (SRMS) error of the direction estimation for each texture in the testing set. The error is 
defined as the difference between the estimated orientations of each two successive rotated 
textures (which is supposed to be 10°) minus 10. The estimated errors are corrected based on the 
fact that few textures like D21 have two symmetric principal directions with 90° difference 
(either of them is correct). The SRMS error of directional and isotropic textures are displayed as 
solid and dashed bars, respectively. The mean values of the errors are shown by dotted bars. As 
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shown, the error power is large for the isotropic textures. However, this error does not affect the 
classification rate, since as mentioned earlier, the extracted wavelet features do not change 
significantly when an isotropic texture is rotated. On the other hand, the errors for the directional 
textures are significantly smaller than those for the isotropic textures. In this figure, the mean and 
standard deviation of the SRMS of errors for the directional  textures are 1.15 and 3.49 degrees, 
respectively. Moreover, note that the estimated error is higher than the real error because 
sometimes the texture direction changes within the texture pattern (e.g. D22, D103, and D105). 
Except for D22 and D102, the error is very low (less than 1°) for directional textures. The reason 
D22 has high error is that it has three symmetric principal directions (see Fig. 10 (a)). Similarly, 
D102 has two non-symmetric principal directions (see Fig. 10 (b)). We can also observe that the 
error mean is small for most of the textures, which means the estimation method is unbiased for 
most of the textures. 

Using the proposed method, we calculated the wavelet features for the training and testing 
images. For data set 1, we used four levels of ordinary wavelet decomposition with different 
wavelet bases. The three most high-resolution subbands were ignored as they were dominated by 
noise. Thus, the features were calculated from 10 submatrices. A k-NN classifier was employed 
to classify each texture based on the extracted features. The classification results are presented in 
Table 1. The results are reported for different k values in the k-NN classifier before and after 
applying the weights to the features. As shown, applying the weights has generated higher 
improvement on e2 compared with e1. The best classification rate is 98.8% using 20 features after 
applying the weights, compared with the maximum of 93.8% in [12] using 64 features. 
Nevertheless, a direct comparison between the results of our proposed method and the method 
presented in [12] is not possible due to the difference between the classifiers. A Mahalanobis 
classifier is used in [12], with all the images at different orientations for both training and testing, 
while we used the images at 0º for training (6%) and all the other orientations for testing (94%). 
Using db6 wavelet, we even get 98.6% using only 10 features. Table 2 shows the confusion map 
when we have the maximum of 98.8% classification rate in Table 1. In this table, only the 
textures with non-zero error are shown. 

In Table 3, we have also presented the classification rates using two alternative methods: (1) 
local binary patterns ( 2

,
riu

RPLBP  features) [6] and k-NN classifier, and (2) the proposed method in 
[19] using db2 wavelet. As shown, the maximum classification rates for these methods are 88.9% 
and 92.1% compared with the maximum of 98.8% with the proposed method. 
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Fig. 9. The SRMS and means of estimation errors. The values for the directional textures 
are shown by solid bars, for the isotropic textures are shown by dashed bars and the error 
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means are shown by dotted bars. Note that except for D22 and D102, the errors are very 
small (less than 1°) for the directional textures. 

 

 

 

 
 
 
 
 
 

 (a)                                           (b) 
Fig. 10. The textures (a) D22 and (b) D102 which have multiple principal directions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. The correct classification percentages for data set 1 using the proposed 
method with different wavelet bases, feature sets, and k  values for k-NN classifier. 

k 
1 3 5  1 3 5 Wavelet 

Bases Features 
Before Weight After Weight 

e1 97.8 95.9 88.9  96.8 95.9 87.8 
e2 75.9 68.1 64.8  80.3 75.1 70.8 db2 

e1 & e2 96.8 96.3 91.5  97.9 98.0 91.2 
e1 96.4 96.8 90.8  96.1 97.1 88.6 
e2 76.3 69.3 68.0  79.7 75.1 70.3 db4 

e1 & e2 97.5 97.3 92.9  97.8 98.2 92.4 
e1 98.2 95.8 89.1  98.6 97.5 88.8 
e2 66.2 57.1 57.4  69.9 64.6 62.5 db6 

e1 & e2 96.7 94.3 89.3  98.8 98.1 92.1 
e1 96.1 94.4 89.6  97.1 95.8 88.6 
e2 58.1 48.5 50.4  62.3 53.9 51.3 db8 

e1 & e2 93.4 92.1 87.2  97.9 96.9 92.5 
e1 95.8 94.3 87.6  98.2 97.3 86.6 
e2 52.6 41.8 44.1  55.4 50.5 51.9 db12 

e1 & e2 89.4 84.3 80.8  98.2 98.3 90.8 

Table 2. The confusion map for the maximum 
classification rate of 98.8% in Table 1. To 
minimize the table size, textures classified 

100% correctly are not listed. 
 D04 D20 D24 D52 D76 D111 

D04 63  1    
D20  63   1  
D24 14  50    
D52    61  3 
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To evaluate the robustness of the direction estimation method to additive white noise, we 
compared the estimated directions before and after adding white Gaussian noise with SNR=0db. 
Defining the error as the difference between these two estimations, the means and SRMS of 
errors are displayed in Fig. 11. As shown, noise does not have significant effect on the 
orientation estimation of directional textures. In this figure, the mean and standard deviation of 
the SRMS of errors for the directinal textures are 1.75° and 3.44°, respectively. The textures 
D19, D22, D56, D76 and D102 have larger errors, due to either multiple principal directions or 
weak staight lines that are significantly affected by the additive noise. 
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Fig. 11. The SRMS and means of differences between the estimated orientations before and 

after adding white Gaussian noise with SNR=0db. The values for directional textures are 
shown by solid bars, for the isotropic textures are shown by dashed bars, and the error 

means are shown by dotted bars. The textures D19, D22, D56, D76 and D102 have higher 
errors compared with other directional textures due to either multiple principal directions or 

weak staight lines that are significantly affected by the additive noise. 
 
 

Table 3. The correct classification percentages for data set 1 using local binary 
patterns and the method proposed in [19] with different k  values in the k-NN 

classifier. 
k 

1 3 5  1 3 5 Feature P,R 
Before Weight After Weight 

8,1 40.8 38.9 36.0  44.9 43.7 41.8 
16,2 81.6 80.3 72.6  83.0 82.4 75.9 
24,3 88.6 86.9 83.1  88.9 87.9 83.9 

8,1+16,2 76.4 72.8 65.3  82.4 77.9 71.2 
8,1+24,3 87.3 86.7 82.1  88.1 88.3 83.6 
16,2+24,3 87.3 87.3 81.8  87.8 87.9 83.1 

2
,

riu
RPLBP  

8,1+16,2+24,3 86.5 85.8 81.2  88.0 88.6 82.6 
e1 90.4 86.3 81.6  90.1 86.3 79.0 
e2 56.9 55.7 56.5  68.2 68.1 68.0 

Proposed 
method in 
[19] with 

db2 wavelet e1 & e2 81.6 79.6 77.1  92.1 88.1 84.3 
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To evaluate the robustness of the proposed method to illumination, we changed the 
illuminations of the images by multiplying a 2-D Gaussian function shown in Fig. 12. The 
principal directions were estimated using the proposed method before and after changing the 
illumination. Defining the error as the difference between these two estimations, the means and 
SRMS of errors are presented in Fig. 13. As shown, the illumination does not have significant 
effect on the orientation estimation of directional textures. In this figure, the mean and standard 
deviation of the SRMS of errors for the directional textures are 1.97° and 4.77°, respectively. 
The textures D22, D56, D76 and D102 have larger errors due to either multiple principal 
directions or weak staight lines affected by illumination. 
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Fig. 13. The SRMS and means of differences between the estimated orientations before 

and after changing the illumination. The values for directional textures are shown by 
solid bars, for the isotropic textures are shown by dashed bars and the error means are 

shown by dotted bars.The textures D22, D56, D76 and D102 have larger errors 
compared with other directional textures due to either multiple principal directions or 

weak staight lines affected by illumination. 
 

Data set 2 consists of 24 texture images used in [6]. These texture images are publicly 
available for experimental evaluation of texture analysis algorithms [32]. We used the 24-bit 
RGB texture images captured at 100 dpi spatial resolution and illuminant “inca” and converted 
them to gray-scale images. Each texture is captured at nine rotation angles (0°, 5°, 10°, 15°, 30°, 
45°, 60°, 75°, and 90°). Each image is of size 538×716 pixels. Twenty nonoverlapping 128×128 
texture samples were extracted from each image by centering a 4×5 sampling grid. We used the 
angle 0° for training and all the other angles for testing the classifier. Therefore, there are 480 
(24×20) training and 3,840 (24×20×8) testing samples. The wavelet transform was calculated 
using the structure shown in Fig. 14 (30 submatrices, ignoring the HH submatrix of first level of 
decomposition). Wavelet features were calculated for each submatrix using (3). Table 4 shows 
the error results using five different wavelet bases and different number of neighbors for k-NN 

 
Fig. 12. The 2-D Gaussian function for changing the illumination. 
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classifier before and after applying the weights. As shown in this table, the maximum correct 
classification percentage (CCP) is 96.0%. The results using local binary pattern are presented in 
Table 5. As shown, the maximum classification rate is also 96.0% using 10+26=36 features. 
Ojala et al. [6] have achieved a classification rate of 97.9% using a joint distribution of features 

RP
riu

RP VARLBP ,
2

,  for (P,R) values of (8,1) and (24,3), and a 3-NN classifier with dissimilarity 
measurement using a nonparametric statistical test. However, the total number of features is 
10B1+26B2 where B1 and B2 are the number of bins selected for 1,8VAR  and 3,24VAR , 
respectively. The numbers of bins B1 and B2 have not been mentioned for this data set, but 
obviously 10B1+26B2 is much greater than 30. A classification rate of 97.4% has been reported 
in [19] using the same data set and 32 features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. The correct classification percentages for data set 2 using the proposed 
method with feature e1, different wavelet bases, and different k  values in k-NN 

classifier. 
k 

1 3 5  1 3 5 Wavelet 
Bases Features 

Before Weight After Weight 
db2 e1 92.7 91.1 90.0  94.2 92.4 91.8 
db4 e1 93.4 91.9 91.0  95.3 93.8 92.9 
db6 e1 94.0 92.4 91.3  96.0 94.0 93.1 
db8 e1 93.5 92.2 91.5  95.2 93.8 93.0 
db12 e1 93.4 91.9 90.7  94.8 93.5 92.5 

Table 5. The correct classification percentages for data set 2 using local binary 
patterns and different k values in k-NN classifier. 

k 
1 3 5  1 3 5 Feature P,R 

Before Weight After Weight 
8,1 74.0 73.8 73.3  73.4 72.3 71.7 
16,2 87.0 85.9 85.6  88.7 87.2 86.3 
24,3 92.3 91.9 91.1  92.5 92.8 92.4 

8,1+16,2 88.9 88.1 87.3  90.3 89.1 88.6 
8,1+24,3 96.0 95.7 94.9  95.8 95.8 95.3 
16,2+24,3 94.3 93.8 92.8  95.6 94.8 94.4 

2
,

riu
RPLBP  

8,1+16,2+24,3 95.5 94.9 94.5  95.8 95.7 95.3 

Fig. 14. The wavelet decomposition structure for data set 2. 
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Data set 3 consists of 60 texture images of size 512×512 from the Brodatz album. These 
texture images are displayed in Fig. 15. The training and testing sets were created in the same 
way as for data set 1, yielding a total of 240 (60×4) images for training and 3,840 (60×4×16) 
images for testing (approximately 6% for training and 94% for testing). The experiments were 
also done as for data set 1. Table 6 shows the CCPs using four different wavelet bases and 
different number of neighbors for the k-NN classifier. The results are reported before and after 
applying the weights on the features. As shown, the maximum CCP is 96.7%. Data set 3 contains 
most of the 15 textures used in [18] (except D29 and D69). A classification rate of 84.6% has 
been reported in [18] while different orientations of the textures have been used in the training 
phase. However, in our experiments only non-rotated textures have been used for training. 
Nevertheless, a direct comparison with the method in [18] is not possible due to the difference 
between the classifiers. 

Table 7 and Fig. 16 show the confusion maps and errors for the maximum classification rate of 
96.7% in Table 6. To minimize their sizes, only the textures with non-zero error have been 
shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Table 8 shows the classification rates using wavelet db4 features for the 20 isotropic textures 
from data set 3 (D04, D05, D09, D10, D23, D24, D27, D28, D37, D482, D57, D66, D74, D75, 
D86, D87, D92, D98, D110, and D111). Compared with Table 6, the classification rate is lower 
for the isotropic textures. 

                                                 
2 For 128×128 images, D48 is non-directional. 

          

          

          

          

          

          
 

Fig. 15. The 60 textures from the Brodatz album used in data set 3. First row: 
D01, D04, D05, D06, D08, D09, D10, D11, D15, D16. Second row: D17, D18, 
D19, D20, D21, D22, D23, D24, D25, D26. Third row: D27, D28, D34, D37, 
D46, D47, D48, D49, D50, D51. Fourth row: D52, D53, D55, D56, D57, D64, 
D65, D66, D68, D74. Fifth row: D75, D76, D77, D78, D81, D82, D83, D84, 
D85, D86. Sixth row: D87, D92, D93, D94, D98, D101, D103, D105, D110, 

D111. 
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Table 6. The correct classification percentages for data set 3 using the proposed 
method with different wavelet bases, feature sets, and k  values in k-NN classifier. 

k 
1 3 5  1 3 5 Wavelet 

Bases Features 
Before Weight After Weight 

e1 88.6 81.9 76.9  91.5 84.5 73.5 
e2 61.2 52.0 52.9  69.2 59.9 59.2 db2 

e1 & e2 93.4 88.0 84.6  96.6 92.8 85.3 
e1 89.3 83.9 77.2  92.2 86.1 74.7 
e2 64.9 55.5 57.4  68.4 59.4 60.4 db4 

e1 & e2 94.4 90.1 85.8  96.7 93.2 85.4 
e1 89.3 83.3 76.7  91.8 85.5 73.5 
e2 55.4 43.5 44.7  58.9 50.1 52.3 db6 

e1 & e2 92.9 86.4 81.8  96.5 91.8 84.7 
e1 90.5 85.0 78.6  92.5 86.5 75.5 
e2 45.0 33.5 37.7  52.9 43.3 45.1 db8 

e1 & e2 87.4 81.0 77.1  95.9 90.8 84.4 
e1 87.2 80.7 74.9  90.5 85.1 75.1 
e2 37.8 26.1 28.8  47.0 39.4 41.7 db12 

e1 & e2 80.5 70.2 65.5  93.5 90.8 82.8 

Table 7. The distribution of errors for the maximum classification rate of 96.7% in Table 6. In this 
table, only the textures with non-zero error are shown. 
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Fig. 16. The errors for the maximum classification rate of 

96.7% in Table 6. In this figure only the textures with non-zero 
error are shown. 

 

 

 

 

 

 

 

 

 

V. CONCLUSION 

We have introduced a new technique for rotation invariant texture analysis using Radon and wavelet 
transforms. In this technique, the principal direction of the texture is estimated using Radon transform and 
then the image is rotated to place the principal direction at 0°. Next, wavelet transform is employed to 
extract the features. The method for estimation of the principal direction is shown to be robust to additive 
white noise and illumination variations. We did a comparison with two of the most recent rotation 
invariant texture analysis techniques. Experimental results show that the proposed method is comparable 
to or outperforms these methods while using a smaller number of features. 

Although the proposed method for principal direction estimation is suitable for most of the 
ordinary textures, more complex textures may need more complex techniques. For example, 
some textures may have straight lines along several directions. This may create ambiguity for the 
direction estimation. In this situation, more complex methods may be employed to estimate the 
direction. To make the method invariant to other geometric distortions, the second part of the 
method, i.e., the feature extraction method can be modified. 

 

Table 8. The correct classification percentages for isotropic textures of data set 3 
using the proposed method with db4 wavelet, different feature sets and k values in k-

NN classifier. 
k 

1 3 5  1 3 5 Wavelet 
Basis Features 

Before Weight After Weight 
e1 84.0 80.0 74.2  86.4 81.9 75.2 
e2 54.2 42.9 44.3  56.1 45.4 46.9 db4 

e1 & e2 91.0 88.4 84.5  94.3 90.3 84.3 
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